ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC проведена медиана AM.
Докажите, что
2AM а) Даны прямые a, b, c, d, проходящие через одну
точку, и прямая l, через эту точку не проходящая. Пусть A,
B, C, D — точки пересечения прямой l с прямыми a, b,
c, d соответственно. Докажите, что
(abcd )= (ABCD).
По положительным числам х и у вычисляют а = 1/y и b = y + 1/x. После этого находят С – наименьшее число из трёх: x, a и b. Точки A, B и C лежат на одной прямой, причём B находится между A и C. На плоскости взяты шесть точек A1, A2, A3, B1, B2, B3.
Докажите, что если описанные окружности треугольников
A1A2B3,
A1B2A3 и B1A2A3 проходят через одну точку, то и описанные
окружности треугольников B1B2A3, B1A2B3 и A1B2B3
пересекаются в одной точке.
Сфера радиуса R делит каждое из рёбер SA , SC , AB и BC треугольной пирамиды SABC на три равные части и проходит через середины рёбер AC и SB . Найдите высоту пирамиды, опущенную из вершины S . |
Страница: 1 2 >> [Всего задач: 10]
Сфера радиуса R делит каждое из рёбер SA , SC , AB и BC треугольной пирамиды SABC на три равные части и проходит через середины рёбер AC и SB . Найдите высоту пирамиды, опущенную из вершины S .
Точки P , Q , R и S расположены в пространстве так, что середины отрезков SQ и PR лежат на сфере радиуса a , а отрезки PS , PQ , QR и SR делятся сферой на три части в отношении 1:2:1 каждый. Найдите расстояние от точки P до прямой QR .
Дана четырёхугольная пирамида SABCD , основание которой – параллелограмм ABCD . Точки M , N и K лежат на ребрах AS , BS и CS соответственно, причём AM:MS = 1:2 , BN:NS = 1:3 , CK:KS = 1:1 . Постройте сечение пирамиды плоскостью MNK . В каком отношении эта плоскость делит ребро SD ?
Дана четырёугольная пирамида SABCD , основание которой – параллелограмм ABCD . Через середину ребра AB проведите плоскость, параллельную прямым AC и SD . В каком отношении эта плоскость делит ребро SB ?
Доказать, что не существует тетраэдра, в котором каждое ребро являлось бы стороной плоского тупого угла.
Страница: 1 2 >> [Всего задач: 10]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке