ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите все шестизначные числа, которые уменьшаются втрое при перенесении последней цифры на первое место.
Докажите, что отрезок, соединяющий вершину равнобедренного треугольника с точкой, лежащей на основании, не больше боковой стороны треугольника.
Окружности с центрами O1 и O2 пересекаются
в точках A и B . Известно, что В треугольнике две высоты не меньше сторон, на которые они опущены. Найдите углы треугольника. Диагонали ромба равны 24 и 70. Найдите сторону ромба. Через вершины A и B треугольника ABC проведены
две параллельные прямые, а прямые m и n симметричны
им относительно биссектрис соответствующих углов.
Докажите, что точка пересечения прямых m и n лежит на
описанной окружности треугольника ABC.
Для каждого непрямоугольного треугольника T обозначим через T1 треугольник, вершинами которого служат основания высот треугольника T; через T2 – треугольник, вершинами которого служат основания высот треугольника T1; аналогично определим треугольники T3, T4 и так далее. Каким должен быть треугольник T, чтобы
С помощью циркуля и линейки через данную внутри окружности точку проведите хорду, которая делилась бы этой точкой пополам.
В остроугольном треугольнике $ABC$ $CM$ – медиана, $P$ – проекция ортоцентра $H$ на биссектрису угла $C$. Докажите, что $MP$ делит отрезок $CH$ пополам. У каждого из тридцати шестиклассников есть одна ручка, один карандаш и одна линейка. После их участия в олимпиаде оказалось, что 26 учеников потеряли ручку, 23 – линейку и 21 – карандаш. Найдите наименьшее возможное количество шестиклассников, потерявших все три предмета. В пространстве (но не в одной плоскости) расположены шесть различных точек: A, B, C, D, E и F. Известно, что отрезки AB и DE, BC и EF, CD и FA попарно параллельны. Докажите, что эти же отрезки и попарно равны.
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 75]
Ребро PA четырёхугольной пирамиды PABCD перпендикулярно плоскости основания ABCD . Ребро PA равно 6. Основание ABCD – квадрат со стороной 8. Точки M и N – середины отрезков AD и CD . Найдите радиус сферы, вписанной в пирамиду SDMN .
В треугольной пирамиде SABC известно, что AB = AC = 10 , BC = 16 . Высота пирамиды, опущенная из вершины S , проходит через вершину B и равна 4. Найдите полную поверхность пирамиды и радиус шара, вписанного в пирамиду.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 75]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке