ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть $O$ – центр описанной окружности остроугольного треугольника $ABC$, точка $M$ – середина стороны $AC$. Прямая $BO$ пересекает высоты $AA_1$ и $CC_1$ в точках $H_a$ и $H_c$ соответственно. Описанные окружности треугольников $BH_aA$ и $BH_cC$ вторично пересекаются в точке $K$. Докажите, что $K$ лежит на прямой $BM$. Через данную точку проведите прямую, пересекающую две данные прямые под равными углами. Можно ли из последовательности 1, ½, ⅓, ... выбрать (сохраняя порядок) Пусть
A, B, C, D - последовательные вершины квадрата, а
точка O расположена внутри квадрата. Известно, что
OC = OD =
В однокруговом шахматном турнире назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше, чем проигравший. Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке M, биссектрисы B1B2 и C1C2 треугольника
AB1C1 пересекаются в точке N. В четырёхугольнике ABCD AB = CD, M и K – середины BC и AD. Докажите, что угол между MK и AC равен полусумме углов BAC и DCA.
Найдите радиус окружности, вписанной в ромб со стороной a и острым углом 60o.
В трапеции ABCD биссектрисы углов A и D пересекаются в точке E, лежащей на боковой стороне BC. Эти биссектрисы разбивают трапецию на три треугольника, в которые вписали окружности. Одна из этих окружностей касается основания AB в точке K, а две другие касаются биссектрисы DE в точках M и N. Докажите, что BK = MN. В треугольной пирамиде противоположные рёбра попарно равны. Докажите, что центры описанной и вписанной сфер совпадают. На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нуль-вектору? Разрежьте произвольный тупоугольный треугольник на 7
остроугольных.
На прямой отмечено 100 точек, и ещё одна точка отмечена вне прямой. Рассмотрим все треугольники с вершинами в этих точках. Диагонали вписанного четырёхугольника ABCD пересекаются в точке N. Описанные окружности треугольников ANB и CND повторно пересекают стороны BC и AD в точках A1, B1, C1, D1. Докажите, что четырёхугольник A1B1C1D1 вписан в окружность с центром N. Можно ли нарисовать девятизвенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?
Сфера с центром в точке O проходит через вершины A , B и C
треугольной пирамиды ABCD и пересекает прямые AD , BD и CD в точках
K , L и M соответственно. Известно, что AD = 10 , BC:BD = 3:2 и
AB:CD = 4
В ромбе ABCD точки M и N — середины сторон BC и CD
соответственно. Найдите угол MAN, если
На плоскости расположено несколько прямых и точек. Доказать, что на плоскости найдётся точка A, не совпадающая ни с одной из данных точек, расстояние от которой до любой из данных точек больше расстояния от неё до любой из данных прямых. Окружности
S1, S2,..., Sn касаются двух окружностей R1
и R2 и, кроме того, S1 касается S2 в точке A1, S2
касается S3 в точке A2..., Sn - 1 касается Sn в точке An - 1. Докажите, что точки
A1, A2,..., An - 1
лежат на одной окружности.
Точка H – ортоцентр треугольника ABC. Касательные, проведённые к описанным окружностям треугольников CHB и AHB в точке H, пересекают прямую AC в точках A1 и C1 соответственно. Докажите, что A1H = C1H. Доказать, что найдётся число вида Бесконечная последовательность чисел xn определяется условиями: xn+1 = 1 – |1 – 2xn|, причём 0 ≤ x1 ≤ 1. |
Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 418]
Из последовательности a, a + d, a + 2d, a + 3d, ..., являющейся бесконечной арифметической прогрессией, где d не равно 0, тогда и только тогда можно выбрать подпоследовательность, являющуюся бесконечной геометрической прогрессией, когда отношение a/d рационально. Докажите это.
Имеется несколько чисел, каждое из которых меньше чем 1951. Общее наименьшее
кратное любых двух из них больше чем 1951.
Дана последовательность целых положительных чисел X1, X2...Xn, все элементы которой не превосходят некоторого числа M. Известно, что при всех k > 2 Xk = | Xk - 1 - Xk - 2|. Какой может быть максимальная длина этой последовательности?
На плоскости расположено несколько прямых и точек. Доказать, что на плоскости найдётся точка A, не совпадающая ни с одной из данных точек, расстояние от которой до любой из данных точек больше расстояния от неё до любой из данных прямых.
Последовательность чисел x1, x2, ... такова, что x1 = ½ и Найдите целую часть суммы
Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 418]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке