Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
|
|
Сложность: 4- Классы: 10,11
|
Пусть M – центр тяжести (точка пересечения медиан) треугольника ABC. При повороте на 120° вокруг точки M точка B переходит в точку P, при повороте на 240° вокруг точки M (в том же направлении) точка C переходит в точку Q. Докажите, что либо треугольник APQ – правильный, либо точки A, P, Q совпадают.
|
|
Сложность: 5 Классы: 10,11
|
Многогранник описан около сферы. Назовем его грань большой, если
проекция сферы на плоскость грани целиком попадает в грань.
Докажите, что больших граней не больше 6.
|
|
Сложность: 3 Классы: 10,11
|
В правильной четырёхугольной усечённой пирамиде середина N ребра B1C1 верхней грани A1B1C1D1 соединена с серединой M ребра AB нижней грани ABCD. Прямые B1C1 и AB не лежат в одной плоскости. Докажите, что проекции рёбер B1C1 и AB
на прямую MN равны между собой.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Даны окружность $\omega$ и не лежащая на ней точка $P$. Пусть $ABC$ – произвольный правильный треугольник, вписанный в $\omega$, а точки $A'$, $B'$, $C'$ – проекции $P$ на прямые $BC$, $CA$, $AB$. Найдите геометрическое место центров тяжести треугольников $A'B'C'$.
|
|
Сложность: 4- Классы: 10,11
|
При каком наибольшем $n$ существует выпуклый многогранник с $n$ гранями, обладающий следующим свойством: для любой грани найдется точка вне многогранника, из которой видны остальные $n-1$ грани?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]