ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 488]      



Задача 109662

Темы:   [ Свойства параллельного переноса ]
[ Метод ГМТ ]
[ Правильный (равносторонний) треугольник ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 5-
Классы: 9,10,11

На плоскости нарисовано некоторое семейство S правильных треугольников, получающихся друг из друга параллельными переносами, причем любые два треугольника пересекаются. Докажите, что найдутся три точки такие, что любой треугольник семейства S содержит хотя бы одну из них.
Прислать комментарий     Решение


Задача 57075

Темы:   [ Правильные многоугольники ]
[ Раскраски ]
[ Поворот помогает решить задачу ]
[ Принцип крайнего (прочее) ]
[ Векторы помогают решить задачу ]
Сложность: 5
Классы: 9

Вершины правильного n-угольника окрашены в несколько цветов так, что точки каждого цвета служат вершинами правильного многоугольника.
Докажите, что среди этих многоугольников найдутся два равных.

Прислать комментарий     Решение

Задача 97836

Темы:   [ Полуинварианты ]
[ Перестановки и подстановки ]
[ Процессы и операции ]
[ Принцип крайнего (прочее) ]
Сложность: 5
Классы: 9,10,11

Автор: Ильичев В.

По одной стороне бесконечного коридора расположено бесконечное количество комнат, занумерованных числами от минус бесконечности до плюс бесконечности. В комнатах живут 9 пианистов (в одной комнате могут жить несколько пианистов), кроме того, в каждой комнате находится по роялю. Каждый день какие-то два пианиста, живущие в соседних комнатах (k-й и (k+1)-й), приходят к выводу, что они мешают друг другу, и переселяются соответственно в (k–1)-ю и (k+2)-ю комнаты. Докажите, что через конечное число дней эти переселения прекратятся. (Пианисты, живущие в одной комнате, друг другу не мешают.)

Прислать комментарий     Решение

Задача 109730

Темы:   [ НОД и НОК. Взаимная простота ]
[ Процессы и операции ]
[ Деление с остатком ]
[ Принцип крайнего (прочее) ]
Сложность: 5
Классы: 8,9,10

По окружности расставлено 100 натуральных чисел, взаимно простых в совокупности. Разрешается прибавлять к любому числу наибольший общий делитель его соседей. Докажите, что при помощи таких операций можно сделать все числа попарно взаимно простыми.

Прислать комментарий     Решение

Задача 110771

Темы:   [ Правильные многоугольники ]
[ Четность и нечетность ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Индукция в геометрии ]
Сложность: 5
Классы: 8,9,10,11

Диагональ правильного 2006-угольника P называется хорошей, если её концы делят границу P на две части, каждая из которых содержит нечётное число сторон. Стороны P также называются хорошими. Пусть P разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри P. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение?

Прислать комментарий     Решение

Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .