Страница:
<< 91 92 93 94
95 96 97 >> [Всего задач: 488]
|
|
Сложность: 5- Классы: 9,10,11
|
На плоскости нарисовано некоторое семейство
S правильных треугольников,
получающихся друг из друга параллельными переносами, причем любые два
треугольника пересекаются. Докажите, что найдутся три точки такие, что
любой треугольник семейства
S содержит хотя бы одну из них.
Вершины правильного n-угольника окрашены в несколько цветов так, что точки каждого цвета служат вершинами правильного многоугольника.
Докажите, что среди этих многоугольников найдутся два равных.
|
|
Сложность: 5 Классы: 9,10,11
|
По одной стороне бесконечного коридора расположено бесконечное количество
комнат, занумерованных числами от минус бесконечности до плюс бесконечности. В
комнатах живут 9 пианистов (в одной комнате могут жить несколько пианистов),
кроме того, в каждой комнате находится по роялю. Каждый день какие-то два
пианиста, живущие в соседних комнатах (k-й и (k+1)-й), приходят к выводу, что они мешают друг другу, и переселяются соответственно в (k–1)-ю и (k+2)-ю комнаты. Докажите, что через конечное число дней эти переселения прекратятся. (Пианисты, живущие в одной комнате, друг другу не мешают.)
|
|
Сложность: 5 Классы: 8,9,10
|
По окружности расставлено 100 натуральных чисел, взаимно простых в совокупности. Разрешается прибавлять к любому числу наибольший общий делитель его соседей. Докажите, что при помощи таких операций можно сделать все числа попарно взаимно простыми.
|
|
Сложность: 5 Классы: 8,9,10,11
|
Диагональ правильного 2006-угольника P называется хорошей, если её концы делят границу P на две части, каждая из которых содержит нечётное число сторон. Стороны P также называются хорошими. Пусть P разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри P. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение?
Страница:
<< 91 92 93 94
95 96 97 >> [Всего задач: 488]