ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 289]      



Задача 65228

Темы:   [ Правильный (равносторонний) треугольник ]
[ Ромбы. Признаки и свойства ]
[ Симметрия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9,10

На стороне BE правильного треугольника ABE вне его построен ромб BCDE. Отрезки AC и BD пересекаются в точке F. Докажите, что  AF < BD.

Прислать комментарий     Решение

Задача 65481

Темы:   [ Правильный (равносторонний) треугольник ]
[ Неравенство треугольника (прочее) ]
[ Против большей стороны лежит больший угол ]
[ Правильный тетраэдр ]
Сложность: 4-
Классы: 10,11

На сторонах BC и AC правильного треугольника ABC отмечены точки X и Y соответственно.
Докажите, что из отрезков AX, BY и XY можно составить треугольник.

Прислать комментарий     Решение

Задача 65678

Темы:   [ Правильный (равносторонний) треугольник ]
[ Свойства симметрий и осей симметрии ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9,10,11

Внутри выпуклого четырехугольника A1A2B2B1 нашлась такая точка C, что треугольники CA1A2 и CB2B1 – правильные. Точки C1 и C2 симметричны точке C относительно прямых A2B2 и A1B1 соответственно. Докажите, что треугольники A1B1C1 и A2B2C2 подобны.

Прислать комментарий     Решение

Задача 65966

Темы:   [ Правильный (равносторонний) треугольник ]
[ Поворот помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 9,10

Внутри равностороннего треугольника ABC отмечена точка M так, что  ∠АМС = 150°.
Докажите, что отрезки АМ, ВМ и СМ таковы, что сумма квадратов двух из них равна квадрату третьего.

Прислать комментарий     Решение

Задача 66015

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Пересекающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 9,10,11

Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ касается ω. Окружность Ωb с центром P проходит через вершину B, а окружность Ωc с центром Q – через C. Докажите, что окружности Ω, Ωb и Ωc имеют общую точку.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .