ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 289]      



Задача 53719

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9

В окружность вписан равносторонний треугольник. Докажите, что хорда, соединяющая середины дуг, отсекаемых сторонами треугольника, делится этими сторонами на три равные части.

Прислать комментарий     Решение


Задача 53892

Темы:   [ Правильный (равносторонний) треугольник ]
[ Медиана, проведенная к гипотенузе ]
[ Две пары подобных треугольников ]
Сложность: 4-
Классы: 8,9

Точки D и E делят стороны AC и AB правильного треугольника ABC в отношениях  AD : DC = BE : EA = 1 : 2.  Прямые BD и CE пересекаются в точке O.
Докажите, что угол AOC – прямой.

Прислать комментарий     Решение

Задача 64736

Темы:   [ Правильный (равносторонний) треугольник ]
[ Три прямые, пересекающиеся в одной точке ]
[ Четыре точки, лежащие на одной окружности ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 9,10

На прямой лежат точки X, Y, Z (именно в таком порядке). Треугольники XAB, YBC, ZCD – правильные, причём вершины первого и третьего ориентированы против часовой стрелки, а второго по часовой стрелке. Докажите, что прямые AC, BD и XY пересекаются в одной точке.

Прислать комментарий     Решение

Задача 65007

Темы:   [ Правильный (равносторонний) треугольник ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные и описанные окружности ]
[ Пересекающиеся окружности ]
[ Симметрия помогает решить задачу ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9

На стороне BC равностороннего треугольника ABC взяты такие точки M и N (M лежит между B и N) , что  ∠MAN = 30°.  Описанные окружности треугольников AMC и ANB пересекаются в точке K. Докажите, что прямая AK содержит центр описанной окружности треугольника AMN.

Прислать комментарий     Решение

Задача 65127

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 10,11

Автор: Якубов А.

Продолжения медиан AA1, BB1 и CC1 треугольника ABC пересекают его описанную окружность в точках A0, B0 и C0 соответственно. Оказалось, что площади треугольников ABC0, AB0C и A0BC равны. Докажите, что треугольник ABC равносторонний.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .