|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На витрине ювелирного магазина лежат 15 бриллиантов. Рядом с ними стоят таблички с указанием масс, на которых написано 1, 2, ..., 15 карат. У продавца есть чашечные весы и четыре гирьки массами 1, 2, 4 и 8 карат. Покупателю разрешается только один тип взвешиваний: положить один из бриллиантов на одну чашу весов, а гирьки — на другую и убедиться, что масса на соответствующей табличке указана верно. Однако за каждую взятую гирьку нужно заплатить продавцу 100 монет. Если гирька снимается с весов и в следующем взвешивании не участвует, продавец забирает её. Какую наименьшую сумму придётся заплатить, чтобы проверить массы всех бриллиантов? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 70]
B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник.
Докажите, что основания высот, середины сторон и середины отрезков от ортоцентра до вершин треугольника лежат на одной окружности.
Докажите, что в любом треугольнике точка H пересечения высот (ортоцентр), центр O описанной окружности и точка M пересечения медиан (центр тяжести) лежат на одной прямой, причём точка M расположена между точками O и H, и MH = 2MO.
б) Докажите, что описанная окружность делит пополам отрезок, соединяющий центры вписанной и вневписанной окружностей.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 70] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|