ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 1284]      



Задача 55532

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4+
Классы: 8,9

Автор: Шафарян В.

Из произвольной точки M окружности, описанной около прямоугольника, опустили перпендикуляры MP и MQ на две его противоположные стороны, и перпендикуляры MR и MT — на продолжения двух других сторон. Докажите, что прямые PR и QT перпендикулярны друг другу, а их точка пересечения принадлежит диагонали прямоугольника.

Прислать комментарий     Решение


Задача 52502

Темы:   [ Угол между касательной и хордой ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 4+
Классы: 8,9

Из точки вне окружности проведены касательные и секущая, причём точки касания и точки пересечения секущей с окружностью являются вершинами некоторой трапеции. Найдите отношение оснований трапеции, если известно, что угол между касательными равен 60o.

Прислать комментарий     Решение


Задача 55479

Темы:   [ Угол между касательной и хордой ]
[ Признаки и свойства касательной ]
Сложность: 4+
Классы: 8,9

Прямые PC и PD касаются окружности с диаметром AB (C и D — точки касания). Докажите, что прямая, соединяющая точку P с точкой пересечения прямых AC и BD, перпендикулярна AB.

Прислать комментарий     Решение


Задача 67454

Темы:   [ Биссектриса делит дугу пополам ]
[ Вспомогательные подобные треугольники ]
[ Инверсия помогает решить задачу ]
[ Изогональное сопряжение ]
Сложность: 4+
Классы: 9,10,11

Высоты $AA_1$, $BB_1$, $CC_1$ остроугольного треугольника $ABC$ пересекаются в точке $H$. Биссектриса угла $CBH$ пересекает отрезок $CH$ в точке $X$, биссектриса угла $BCH$ пересекает отрезок $BH$ в точке $Y$. Обозначим величину угла $XA_1Y$ через $\alpha$. Аналогично определим $\beta$ и $\gamma$. Найдите значение суммы $\alpha + \beta + \gamma$.

Прислать комментарий     Решение

Задача 36999

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 5
Классы: 9,10

Автор: Панов М.Ю.

Диагонали вписанного четырёхугольника ABCD пересекаются в точке M, ∠AMB = 60°. На сторонах AD и BC во внешнюю сторону построены равносторонние треугольники ADK и BCL. Прямая KL пересекает описанную около ABCD окружность в точках P и Q. Докажите, что PK = LQ.

Прислать комментарий     Решение

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 1284]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .