ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Через точку, расположенную внутри треугольника, проведены прямые, параллельные сторонам треугольника. Эти прямые разбивают треугольник на три треугольника и три четырёхугольника. Пусть a, b и c – параллельные высоты трёх этих треугольников. Найдите параллельную им высоту исходного треугольника.

Вниз   Решение


Найдите двузначное число, которое вдвое больше произведения своих цифр.

ВверхВниз   Решение


Окружность касается стороны BC треугольника ABC в точке M, а продолжений сторон AB и AC — в точках P и Q соответственно. Вписанная окружность треугольника ABC касается стороны BC в точке K, а стороны AB — в точке L. Докажите, что:

а) отрезок AP равен полупериметру p треугольника ABC;

б) BM = CK;

в) BC = PL.

ВверхВниз   Решение


В треугольник ABC вписана окружность. Пусть x — расстояние от вершины A до касания окружности со стороной AB, BC = a. Докажите, что x = p - a, где p — полупериметр треугольника.

Вверх   Решение

Задачи

Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 1284]      



Задача 35756

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Биссектриса делит дугу пополам ]
Сложность: 3+
Классы: 8,9,10

Докажите, что в любом неравнобедренном треугольнике биссектриса лежит между медианой и высотой, проведенными из той же вершины.
Прислать комментарий     Решение


Задача 52435

Темы:   [ Теорема синусов ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Окружность радиуса R проходит через вершины A и B треугольника ABC и касается прямой AC в точке A. Найдите площадь треугольника ABC, зная, что $ \angle$ABC = $ \beta$, $ \angle$CAB = $ \alpha$.

Прислать комментарий     Решение


Задача 52989

Темы:   [ Теорема косинусов ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Правильный треугольник ABC со стороной, равной 3, вписан в окружность. Точка D лежит на окружности, причём хорда AD равна $ \sqrt{3}$. Найдите хорды BD и CD.

Прислать комментарий     Решение


Задача 53033

Темы:   [ Вписанный угол равен половине центрального ]
[ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

Стороны KN и LM трапеции KLMN параллельны, причём KN = 3, а угол M равен 120o. Прямые LM и MN являются касательными к окружности, описанной около треугольника KLN. Найдите площадь треугольника KLN.

Прислать комментарий     Решение


Задача 53057

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Четыре точки окружности следуют в порядке: A, B, C, D. Продолжение хорды AB за точку B и хорды CD за точку C пересекаются в точке E, причём угол AED равен 60o. Угол ABD в три раза больше угла BAC. Докажите, что AD — диаметр окружности.

Прислать комментарий     Решение


Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 1284]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .