Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Доказать, что в вершинах многогранника можно расставить натуральные числа так, что в каждых двух вершинах, соединённых ребром, стоят числа не взаимно простые, а в каждых двух вершинах, не соединённых ребром, взаимно простые.
Примечание: простых чисел бесконечно много.

Вниз   Решение


Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон. Докажите, что аффинным преобразованием этот пятиугольник можно перевести в правильный пятиугольник.

ВверхВниз   Решение


На стороне $AC$ треугольника $ABC$ во внешнюю сторону был построен квадрат с центром $F$. Затем всё стерли, кроме точки $F$ и середин $N$, $K$ сторон $BC$, $AB$ соответственно. Восстановите треугольник.

ВверхВниз   Решение


На сторонах AB, BC и CA треугольника ABC взяты точки P, Q и R соответственно. Докажите, что центры описанных окружностей треугольников APR, BPQ и CQR образуют треугольник, подобный треугольнику ABC.

ВверхВниз   Решение


Докажите, что произведение любых трёх последовательных натуральных чисел делится на 6.

Вверх   Решение

Задачи

Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 1282]      



Задача 67123

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Радикальная ось ]
Сложность: 3+
Классы: 8,9,10,11

Продолжения боковых сторон $AB$ и $CD$ трапеции $ABCD$ ($AD > BC$) пересекаются в точке $P$. На отрезке $AD$ нашлась такая точка $Q$, что $BQ=CQ$. Докажите, что линия центров окружностей, описанных около треугольников $AQC$ и $BQD$, перпендикулярна прямой $PQ$.
Прислать комментарий     Решение


Задача 67337

Темы:   [ Вписанные и описанные окружности ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9,10,11

В треугольнике $ABC$ вписанная окружность $\omega$ касается сторон $BC$, $CA$, $AB$ в точках $A_1$, $B_1$ и $C_1$ соответственно, $P$ – произвольная точка этой окружности. Прямая $AP$ вторично пересекает описанную окружность треугольника $AB_1C_1$ в точке $A_2$. Аналогично строятся точки $B_2$ и $C_2$. Докажите, что описанная около треугольника $A_2B_2C_2$ окружность касается $\omega$.
Прислать комментарий     Решение


Задача 78033

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9

На окружности даны четыре точки A, B, C, D. Через каждую пару соседних точек проведена окружность. Вторые точки пересечения соседних окружностей обозначим через A1, B1, C1, D1. (Некоторые из них могут совпадать с прежними.) Доказать, что A1, B1, C1, D1 лежат на одной окружности.
Прислать комментарий     Решение


Задача 78083

Темы:   [ ГМТ с ненулевой площадью ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 9

Все точки данного отрезка AB проектируются на всевозможные прямые, проходящие через данную точку O. Найти геометрическое место этих проекций.
Прислать комментарий     Решение


Задача 108497

Темы:   [ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Известно, что трапеция ABCD — равнобедренная, BC$ \Vert$AD и BC > AD. Трапеция ECDA также равнобедренная, причём AE$ \Vert$DC и AE > DC. Найдите BE, если известно, что косинус суммы двух углов $ \angle$CDE и $ \angle$BDA равен $ {\frac{1}{3}}$, а DE = 7.

Прислать комментарий     Решение


Страница: << 103 104 105 106 107 108 109 >> [Всего задач: 1282]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .