ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Натуральные числа M и K отличаются перестановкой цифр.
Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC. Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра. |
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 401]
Две окружности касаются друг друга внешним образом в точке A. Через точку B на их общей касательной AB проведены две прямые, одна из которых пересекает первую окружность в точках M и N, а другая вторую окружность в точках P и Q. Известно, что AB = 6, BM = 9, BP = 5. Найдите отношение площадей треугольников MNO и PQO, где точка O — точка пересечения прямых MP и NQ.
Окружность C2 расположена внутри окружности C1 и касается
ее в точке P. Секущая MN окружности
C1(M, N
В окружности с центром O проведены две параллельные хорды AB и CD. Окружности с диаметрами AB и CD пересекаются в точке P.
В окружность вписан прямоугольный треугольник ABC с гипотенузой AB. Пусть K – середина дуги BC, не содержащей точку A, N – середина отрезка AC, M – точка пересечения луча KN с окружностью. В точках A и C проведены касательные к окружности, которые пересекаются в точке E. Докажите, что
Окружности S1 и S2 пересекаются в точках M и N. Докажите, что если вершины A и C некоторого прямоугольника ABCD лежат на окружности S1, а вершины B и D – на окружности S2, то точка пересечения диагоналей прямоугольника лежит на прямой MN.
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 401]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке