ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 403]      



Задача 52462

Темы:   [ Диаметр, основные свойства ]
[ Подобные треугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9

Дана окружность с диаметром AB. Вторая окружность с центром в точке A пересекает первую в точках C и D, а диаметр AB – в точке E. На дуге CE, не содержащей точки D, взята точка M, отличная от точек C и E. Луч BM пересекает первую окружность в точке N. Известно, что  CN = a, DN = b.  Найдите MN.

Прислать комментарий     Решение

Задача 52463

Темы:   [ Диаметр, основные свойства ]
[ Подобные треугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9

Дана окружность с диаметром PQ. Вторая окружность с центром в точке Q пересекает первую в точках S и T, а диаметр PQ в точке A. AB – диаметр второй окружности. На дуге SB, не содержащей точки T, взята точка C, отличная от точек S и B. Отрезок PC пересекает первую окружность в точке D. Известно, что
SD = n,  DC = m.  Найдите DT.

Прислать комментарий     Решение

Задача 64725

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки подобия ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 10,11

На сторонах AD и CD параллелограмма ABCD с центром O отмечены такие точки P и Q соответственно, что  ∠AOP = ∠COQ = ∠ABC.
  а) Докажите, что  ∠ABP = ∠CBQ.
  б) Докажите, что прямые AQ и CP пересекаются на описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 65989

Темы:   [ Тетраэдр (прочее) ]
[ Теорема о трех перпендикулярах ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки перпендикулярности ]
Сложность: 4-
Классы: 10,11

Все грани треугольной пирамиды SABC – остроугольные треугольники. SX и SY – высоты граней ASВ и BSС. Известно, что четырёхугольник AXYC – вписанный. Докажите, что прямые AC и BS перпендикулярны.

Прислать комментарий     Решение

Задача 109609

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Теорема Паскаля ]
[ Симметрия помогает решить задачу ]
[ Хорды и секущие (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Гордон В.

Хорда CD окружности с центром O перпендикулярна ее диаметру AB, а хорда AE делит пополам радиус OC.
Докажите, что хорда DE делит пополам хорду BC.

Прислать комментарий     Решение

Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 403]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .