Страница:
<< 19 20 21 22 23 24 25 [Всего задач: 122]
|
|
Сложность: 5- Классы: 10,11
|
В четырёхугольнике ABCD вписанная окружность ω касается сторон BC и DA в точках E и F соответственно. Оказалось, что прямые AB, FE и CD пересекаются в одной точке S. Описанные окружности Ω и Ω1 треугольников AED и BFC, вторично пересекают окружность ω в точках E1 и F1. Докажите, что прямые EF и E1F1 параллельны.
|
|
Сложность: 5 Классы: 10,11
|
Пусть AA1, BB1 и
CC1 – высоты неравнобедренного остроугольного
треугольника ABC; описанные окружности треугольников ABC и
A1B1C, вторично
пересекаются в точке P, Z – точка пересечения касательных к описанной окружности треугольника ABC, проведённых в точках A и B. Докажите, что прямые AP, BC и ZC1 пересекаются в одной точке.
Страница:
<< 19 20 21 22 23 24 25 [Всего задач: 122]