ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

На центральном телеграфе стоят разменные автоматы, которые меняют 20 коп. на 15, 2, 2 и 1; 15 коп. на 10, 2, 2 и 1; 10 коп. на 3, 3, 2 и 2. Петя разменял 1 руб. 25 коп. серебром на медь. Вася, посмотрев на результат, сказал: "Я точно знаю, какие у тебя были монеты" и назвал их. Назовите и вы.

Вниз   Решение


В трапеции ABCD одно основание в два раза больше другого. Меньшее основание равно c. Диагонали трапеции пересекаются под прямым углом, а отношение боковых сторон равно k. Найдите боковые стороны трапеции.

ВверхВниз   Решение


Докажите, что высота прямоугольного треугольника, опущенная на гипотенузу, равна произведению катетов, делённому на гипотенузу.

ВверхВниз   Решение


Докажите, что существует такой набор из 100 различных натуральных чисел c1, c2, ..., c100, что для любых двух соседних чисел ci и ci+1 этого набора сумма     есть квадрат целого числа.

ВверхВниз   Решение


Окружности S1 и S2 касаются окружности S внутренним образом в точках A и B, причем одна из точек пересечения окружностей S1 и S2 лежит на отрезке AB. Докажите, что сумма радиусов окружностей S1 и S2 равна радиусу окружности S.

ВверхВниз   Решение


В классе меньше 30 человек. Вероятность того, что наугад выбранная девочка отличница, равна 3/13, а вероятность того, что наугад выбранный мальчик – отличник, равна 4/11. Сколько в классе отличников?

ВверхВниз   Решение


На квадратном клетчатом листе бумаги размером 100 * 100 клеток нарисовано несколько прямоугольников. Каждый прямоугольник состоит из целых клеток, различные прямоугольники не накладываются друг на друга и не соприкасаются (см. пример на рис.). Задан массив размером 100 * 100, в котором элемент А [i, j] = 1, если клетка [i, j] принадлежит какому - либо прямоугольнику, и А [i, j] = 0 в противном случае. Написать программу, которая сосчитает и напечатает число прямоугольников.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 102721

Темы:   [ Метод координат на плоскости ]
[ Окружности (прочее) ]
Сложность: 3-
Классы: 8,9,10

Окружность с центром в точке M(3;1) проходит через начало координат. Составьте уравнение окружности.

Прислать комментарий     Решение


Задача 102723

Темы:   [ Метод координат на плоскости ]
[ Окружности (прочее) ]
Сложность: 3
Классы: 8,9

Даны точки A(0;0), B(4;0) и C(0;6). Составьте уравнение окружности, описанной около треугольника ABC.

Прислать комментарий     Решение


Задача 102722

Темы:   [ Метод координат на плоскости ]
[ Окружности (прочее) ]
Сложность: 3
Классы: 8,9

Найдите радиус и координаты центра окружности, заданной уравнением

                               а) (x - 3) 2 + (y + 2)2 = 16;

                               б) x2 + y2 - 2(x - 3y) - 15 = 0;

                               в) x2 + y2 = x + y + $ {\frac{1}{2}}$.

Прислать комментарий     Решение


Задача 66797

Темы:   [ Геометрия на клетчатой бумаге ]
[ Окружности (прочее) ]
[ Теорема синусов ]
Сложность: 3
Классы: 8,9,10,11

На клетчатой бумаге нарисовали треугольник, один из углов которого равен $45^{\circ}$ (см.рис.). Найдите значения остальных углов.

Прислать комментарий     Решение

Задача 35243

Темы:   [ Длины сторон (неравенства) ]
[ Окружности (прочее) ]
[ Окружности (построения) ]
Сложность: 3+
Классы: 7,8,9

Через две точки, лежащие в круге, провести окружность, лежащую целиком в том же круге.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .