ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 2247]      



Задача 67234

Тема:   [ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9,10,11

Автор: Попов Л. А.

В остроугольном треугольнике $ABC$ медиана $CM$ и высота $AH$ пересекаются в точке $O$. Вне треугольника отмечена точка $D$ так, что $AOCD$ – параллелограмм. Чему равно $BD$, если известно, что $MO=a$, $OC=b$?
Прислать комментарий     Решение


Задача 76484

Тема:   [ Параллелограммы (прочее) ]
Сложность: 3
Классы: 10,11

На сторонах параллелограмма вне его построены квадраты. Доказать, что их центры лежат в вершинах некоторого квадрата.
Прислать комментарий     Решение


Задача 76512

Темы:   [ Параллелограммы (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

Сторона AD параллелограмма ABCD разделена на n равных частей. Первая точка деления P соединена с вершиной B.
Доказать, что прямая BP отсекает на диагонали AC часть AQ, которая равна 1/n+1 части диагонали:  AQ = AC/n+1.

Прислать комментарий     Решение

Задача 77921

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Точка внутри равнобокой трапеции соединяется со всеми вершинами. Доказать, что из четырёх полученных отрезков можно сложить четырёхугольник, вписанный (Разрешается, чтобы вершины четырёхугольника лежали не только на сторонах трапеции, но и на их продолжениях — прим. ред.) в эту трапецию.
Прислать комментарий     Решение


Задача 79485

Темы:   [ Ромбы. Признаки и свойства ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 8

На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник ромбом.
Прислать комментарий     Решение


Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .