ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 1396]      



Задача 55343

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема синусов ]
Сложность: 3
Классы: 8,9

В треугольнике ABC известно, что $ \angle$BAC = $ \alpha$, $ \angle$BCA = $ \gamma$, AB = c. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Задача 102435

Темы:   [ Отношения площадей ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 8,9

В треугольнике ABC медиана AK пересекает медиану BD в точке L. Найдите площадь треугольника ABC, если площадь четырёхугольника KCDL равна 5.

Прислать комментарий     Решение


Задача 102436

Темы:   [ Отношения площадей ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 8,9

В треугольнике ABC медиана AK пересекает медиану BD в точке L. Найдите площадь четырёхугольника KCDL, если площадь треугольника ABC равна 24.

Прислать комментарий     Решение


Задача 54957

Темы:   [ Медиана делит площадь пополам ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 8,9

Докажите, что медианы треугольника разбивают его на шесть равновеликих треугольников.

Прислать комментарий     Решение


Задача 54960

Темы:   [ Перегруппировка площадей ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Докажите, что если какую-либо точку внутри параллелограмма соединить со всеми его вершинами, то сумма площадей двух противолежащих треугольников равна сумме площадей двух других.

Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 1396]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .