ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 484]      



Задача 54593

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Четырехугольники (построения) ]
[ Удвоение медианы ]
Сложность: 4
Классы: 8,9

Постройте выпуклый четырёхугольник по четырём сторонам и отрезку, соединяющему середины двух противоположных сторон.

Прислать комментарий     Решение


Задача 54592

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Четырехугольники (построения) ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки постройте четырёхугольник по диагоналям, углу между ними и двум каким-нибудь сторонам.

Прислать комментарий     Решение


Задача 55608

Темы:   [ Ортоцентр и ортотреугольник ]
[ Построение треугольников по различным точкам ]
[ Симметрия помогает решить задачу ]
Сложность: 4+
Классы: 8,9

Дана окружность S, точка A на ней и точка H внутри неё. Постройте на окружности такие точки B и C, чтобы точка H была точкой пересечения высот треугольника ABC.

Прислать комментарий     Решение


Задача 55770

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Построение треугольников по различным элементам ]
[ Гомотетия помогает решить задачу ]
Сложность: 4+
Классы: 8,9

Дан остроугольный треугольник ABC. С помощью циркуля и линейки постройте на сторонах AB и BC соответственно такие точки X и Y, для которых AX = XY = YC.

Прислать комментарий     Решение


Задача 65050

Темы:   [ Неравенства для элементов треугольника (прочее) ]
[ Треугольник (построения) ]
[ Подерный (педальный) треугольник ]
[ Метод ГМТ ]
Сложность: 4+
Классы: 10,11

Дан остроугольный треугольник ABC.
Найдите на сторонах BC, CA, AB такие точки A', B', C', чтобы наибольшая сторона треугольника A'B'C' была минимальна.

Прислать комментарий     Решение

Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 484]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .