ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 161]      



Задача 32883

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Формула Герона ]
[ Неравенство Коши ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Доказать, что
  а) из всех треугольников с данной стороной и данным периметром наибольшую площадь имеет равнобедренный треугольник (у которого данная сторона является основанием);
  б) из всех треугольников с данной стороной и данной площадью наименьший периметр имеет равнобедренный треугольник (у которого данная сторона является основанием).

Прислать комментарий     Решение

Задача 35509

Темы:   [ Экстремальные свойства (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Четыре села находятся в вершинах квадрата со стороной 1 км. Для того, чтобы можно было проехать из каждого села в каждое, проложили две прямолинейные дороги вдоль диагоналей данного квадрата. Можно ли проложить сеть дорог между селами иным образом так, чтобы их суммарная длина уменьшилась, но по-прежнему из каждого села можно было проехать в каждое?

Прислать комментарий     Решение

Задача 57534

Темы:   [ Экстремальные точки треугольника ]
[ Отношение площадей треугольников с общим углом ]
[ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9

На гипотенузе AB прямоугольного треугольника ABC взята точка X, M и N – её проекции на катеты AC и BC.
  а) При каком положении точки X длина отрезка MN будет наименьшей?
  б) При каком положении точки X площадь четырёхугольника CMXN будет наибольшей?

Прислать комментарий     Решение

Задача 98284

Темы:   [ Экстремальные свойства (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

На плоскости даны три точки A, B, C. Через точку C проведите прямую так, чтобы произведение расстояний от этой прямой до A и B было максимальным. Всегда ли такая прямая единственна?

Прислать комментарий     Решение

Задача 76529

Тема:   [ Угол (экстремальные свойства) ]
Сложность: 3+
Классы: 8,9

На сторонах угла AOB от вершины O отложены отрезки OA и OB, причем OA > OB. На отрезке OA взята точка M, на продолжении отрезка OB — точка N так, что AM = BN = x. Найти значение x, при котором отрезок MN имеет наименьшую длину.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 161]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .