ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 161]      



Задача 54615

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ ГМТ - окружность или дуга окружности ]
[ Периметр треугольника ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки около данного треугольника опишите равносторонний треугольник с наибольшим возможным периметром.

Прислать комментарий     Решение

Задача 78160

Темы:   [ Угол (экстремальные свойства) ]
[ Индукция в геометрии ]
Сложность: 4-
Классы: 10,11

Провести из точки O n лучей на плоскости так, чтобы сумма всех попарных углов между ними была наибольшей. (Рассматриваются только углы, не превышающие 180o.)
Прислать комментарий     Решение


Задача 78172

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 4-
Классы: 8,9

Как должна двигаться ладья по шахматной доске, чтобы побывать на каждом поле по одному разу и сделать наименьшее число поворотов?
Прислать комментарий     Решение


Задача 79419

Темы:   [ Четырехугольники (экстремальные свойства) ]
[ Сумма длин диагоналей четырехугольника ]
Сложность: 4-
Классы: 10

В выпуклом четырёхугольнике две стороны равны 1, а другие стороны и обе диагонали не больше 1. Какое максимальное значение может принимать периметр четырёхугольника?
Прислать комментарий     Решение


Задача 78280

Темы:   [ Наибольшая или наименьшая длина ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9,10

Даны два пересекающихся отрезка и BD. На этих лучах выбираются точки M и N (соответственно) так, что AM = BN. Найти положение точек M и N, при котором длина отрезка MN минимальна (сравните с задачей 1 для 10 класса).
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 161]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .