Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 15 задач
Версия для печати
Убрать все задачи

Составьте уравнение прямой, проходящей через точку M(- 3;2) параллельно прямой 2x - 3y + 4 = 0.

Вниз   Решение


Даны два выпуклых многоугольника. Известно, что расстояние между любыми двумя вершинами первого не больше 1 , расстояние между любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше, чем 1/ . Докажите, что многоугольники не имеют общих внутренних точек.

ВверхВниз   Решение


Ребро правильного тетраэдра ABCD равно a . На рёбрах AB и CD взяты точки E и F так, что описанная около тетраэдра сфера пересекает прямую, проходящую через E и F , в точках M и N . Найдите длину отрезка EF , если ME:EF:FN=3:12:4 .

ВверхВниз   Решение


Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур задаётся выражением T(t) = T0+at+bt2 , где T0 = 1160 К, a = 34 К/мин, b = -0,2 К/ мин2 . Известно, что при температурах нагревателя свыше 2000 К прибор может испортиться, поэтому его нужно отключать. Определите (в минутах) через какое наибольшее время после начала работы нужно отключать прибор.

ВверхВниз   Решение


Обозначим S(x) сумму цифр числа x . Найдутся ли три таких натуральных числа a , b и c , что S(a+b)<5 , S(a+c)<5 и S(b+c)<5 , но S(a+b+c)>50 ?

ВверхВниз   Решение


В пространстве заданы три луча: DA , DB и DC , имеющие общее начало D , причём ADB = ADC = BDC = 90o . Сфера пересекает луч DA в точках A1 и A2 , луч DB – в точках B1 и B2 , луч DC – в точках C1 и C2 . Найдите площадь треугольника A2B2C2 , если площади треугольников DA1B1 , DA1C1 , DB1C1 и DA2B2 равны соответственно , 10, 6 и 40.

ВверхВниз   Решение


Даны точки  A(3, 5),  B(–6, –2)  и  C(0, –6).  Докажите, что треугольник ABC равнобедренный.

ВверхВниз   Решение


На столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать?

ВверхВниз   Решение


Найдите все простые p, для каждого из которых существуют такие натуральные x и y, что  px = y³ + 1.

ВверхВниз   Решение


Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур задаётся выражением T(t) = T0+at+bt2 , где T0 = 200 К, a = 75 К/мин, b = -0,5 К/ мин2 . Известно, что при температурах нагревателя свыше 1500 К прибор может испортиться, поэтому его нужно отключать. Определите (в минутах) через какое наибольшее время после начала работы нужно отключать прибор.

ВверхВниз   Решение


Пусть a, b, c – длины сторон произвольного треугольника; p – полупериметр; r – радиус вписанной окружности. Докажите неравенство

ВверхВниз   Решение


B пирамиду, основанием которой служит параллелограмм, можно вписать сферу.
Докажите, что суммы площадей её противоположных боковых граней равны.

ВверхВниз   Решение


Постройте четырёхугольник, в который можно вписать и около которого можно описать окружность, по радиусам этих окружностей и углу между диагоналями.

ВверхВниз   Решение


Вершина S пирамиды SABC находится на расстоянии 4 от центра сферы радиуса 1, которая проходит через точки A , B и C и пересекает ребра SA , SB , SC соответственно в точках A1 , B1 , C1 . Отношение длин отрезков B1C1 и BC равно , отношение площадей треугольников SA1B1 и SAB равно , а отношение объёмов пирамид SA1B1C1 и SABC равно . Найдите длины отрезков SA1 , SB1 , SC1 .

ВверхВниз   Решение


Замените в равенстве   ПИРОГ = КУСОК + КУСОК + КУСОК + ... + КУСОК   одинаковые буквы одинаковыми цифрами, а разные – разными так, чтобы равенство было верным, а количество "кусков пирога" было бы наибольшим из возможных.

Вверх   Решение

Задача 116607
Темы:    [ Ребусы ]
[ Задачи с неравенствами. Разбор случаев ]
[ Оценка + пример ]
Сложность: 3+
Классы: 6,7
Из корзины
Прислать комментарий

Условие

Замените в равенстве   ПИРОГ = КУСОК + КУСОК + КУСОК + ... + КУСОК   одинаковые буквы одинаковыми цифрами, а разные – разными так, чтобы равенство было верным, а количество "кусков пирога" было бы наибольшим из возможных.


Решение

  Пусть "кусков" 8 или 9.  ПИРОГ ≤ 98765,  следовательно,  КУСОК ≤ 98765 : 8 < 12346. С другой стороны,  КУСОК ≥ 12341.  Остается единственный случай  КУСОК = 12341,  а "кусков" 8. Но  12341·8 = 98728  – не подходит. Отсюда видно, что "кусков" не больше семи.
  Один из возможных примеров для семи "кусков" нетрудно найти подбором. Покажем, как найти все возможные ответы.
  Ясно, что  К = 1,  тогда  Г = 7.  Значит,  П = 8 или 9,  а  О = 0 или 5.
  Пусть  П = 8.  Тогда  80234 ≤ ПИРОГ ≤ 86547,  значит,  11462 < 80234 : 7 ≤ КУСОК ≤ 86547 : 7 < 12363.  Учитывая возможные значения букв,
12051 ≤ КУСОК ≤ 12351.  Итак, есть три варианта: 12051, 12301 и 12351. Из них подходят только первый и последний.
  Пусть  П = 9.  Аналогичные оценки показывают, что  13051 ≤ КУСОК ≤ 14051.  Имеются 11 вариантов: 13051, 13201, 13251, 13401, 13451, 13501, 13601, 13651, 13801, 13851, 14051. Из них подходят два: 13601 и 14051.


Ответ

4 варианта:  84357 = 7·12051,  86457 = 7·12351,  95207 = 7·13601,  98357 = 7·14051.

Замечания

8 баллов

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 2012
Класс
Класс 6
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .