ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найти геометрическое место четвёртых вершин прямоугольников, три вершины которых лежат на двух данных концентрических окружностях, а стороны параллельны двум данным прямым. К некоторому натуральному числу справа последовательно приписали два двузначных числа. Полученное число оказалось равным кубу суммы трёх исходных чисел. Найдите все возможные тройки исходных чисел. Известно, что в кодовом замке исправны только кнопки с номерами 1, 2, 3, а код этого замка трёхзначен и не содержит других цифр. Написать последовательность цифр наименьшей длины, наверняка открывающую этот замок (замок открывается, как только подряд и в правильном порядке нажаты все три цифры его кода). Из всех параллелограммов данной площади найти тот, у которого наибольшая диагональ минимальна. Разрежьте квадрат на 6 частей и сложите из них три одинаковых квадрата.
В треугольник вписана окружность, и точки касания её со сторонами треугольника соединены между собой. В полученный таким образом треугольник вписана новая окружность, точки касания которой со сторонами являются вершинами третьего треугольника, имеющего те же углы, что и первоначальный треугольник. Найти эти углы. В прямоугольной таблице произведение суммы чисел любого столбца на сумму чисел
любой строки равно числу, стоящему на их пересечении. На стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно. Точки M, N, K – середины рёбер соответственно AB, BC,
DD1 параллелепипеда ABCDA1B1C1D1. За круглым столом сидят 2015 человек, каждый из них – либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Им раздали по одной карточке, на каждой карточке написано по числу; при этом все числа на карточках различны. Посмотрев на карточки соседей, каждый из сидящих за столом сказал: "Мое число больше, чем у каждого из двух моих соседей". После этого k из сидящих сказали: "Мое число меньше, чем у каждого из двух моих соседей". При каком наибольшем k это могло случиться? а) Докажите, что основания перпендикуляров, опущенных из точки P описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой (прямая Симсона). б) Основания перпендикуляров, опущенных из некоторой точки P на стороны треугольника или их продолжения, лежат на одной прямой. Докажите, что точка P лежит на описанной окружности треугольника.
Дан выпуклый четырёхугольник площади S. Внутри него выбирается точка и отображается симметрично относительно середин его сторон. Получаются четыре вершины нового четырёхугольника. Найдите его площадь.
Найдите высоту трапеции, у которой основания равны a и b (a < b), угол между диагоналями равен 90o, а угол между продолжениями боковых сторон равен 45o.
|
Задача 55350
Условие
Найдите высоту трапеции, у которой основания равны a и b (a < b), угол между диагоналями равен 90o, а угол между продолжениями боковых сторон равен 45o.
Подсказка
Через одну из вершин меньшего основания трапеции проведите прямую, параллельную боковой стороне, и примените теорему косинусов.
Решение
Пусть BC и AD — основания данной трапеции ABCD, BC = a, AD = b. Обозначим боковые стороны трапеции AB = x, CD = y, а высоту — h. Через вершину B проведём прямую, параллельную боковой стороне CD, до пересечения с основанием AD в точке K. Удвоенная площадь треугольника ABC равна
xy sin 45o = (b - a)h.
По теореме косинусов из этого треугольника находим, что
(b - a)2 = x2 + y2 - 2xy cos 45o.
Пусть M — точка пересечения диагоналей трапеции. По теореме
Пифагора из прямоугольных треугольников AMB, BMC, CMD и AMD
находим, что
x2 + y2 = (AM2 + BM2) + (CM2 + DM2) =
= (AM2 + DM2) + (BM2 + CM2) = a2 + b2.
Таким образом, имеем уравнение
(a - b)2 = a2 + b2 - 2(b - a)h,
из которого находим, что
h =
Ответ
ЗамечанияИсточники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке