Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 24 задачи
Версия для печати
Убрать все задачи

Два правильных равных треугольника расположены в пространстве в параллельных плоскостях P1 и P2, причём отрезок, соединяющий их центры, перпендикулярен плоскостям. Найти геометрическое место точек, являющихся серединами отрезков, соединяющих точки одного треугольника с точками другого треугольника.

Вниз   Решение


Играют двое, ходят по очереди. Первый ставит на плоскости красную точку, второй в ответ ставит на свободные места 10 синих точек. Затем опять первый ставит на свободное место красную точку, второй ставит на свободные места 10 синих, и т.д. Первый считается выигравшим, если какие-то три красные точки образуют правильный треугольник. Может ли второй ему помешать?

ВверхВниз   Решение


Было семь ящиков. В некоторые из них положили еще по семь ящиков (не вложенных друг в друга) и т. д. В итоге стало 10 непустых ящиков.
Сколько всего стало ящиков?

ВверхВниз   Решение


Площадь треугольника ABC равна 2. Найдите площадь сечения пирамиды ABCD плоскостью, проходящей через середины рёбер AD , BD , CD .

ВверхВниз   Решение


У Гриши есть 5000 рублей. В магазине продаются шоколадные зайцы по цене 45 рублей за штуку. Чтобы отнести зайцев домой, Грише придется купить ещё несколько сумок по 30 рублей за штуку. В одну сумку помещается не более 30 шоколадных зайцев. Гриша купил наибольшее возможное количество зайцев и достаточное количество сумок, чтобы донести в них всех зайцев. Сколько денег осталось у Гриши?

ВверхВниз   Решение


а) Квадрат разрезан на равные прямоугольные треугольники с катетами 3 и 4 каждый. Докажите, что число треугольников чётно.

б) Прямоугольник разрезан на равные прямоугольные треугольники с катетами 1 и 2 каждый. Докажите, что число треугольников чётно.

ВверхВниз   Решение


У равнобедренного треугольника стороны равны 3 и 7. Какая из сторон является основанием?

ВверхВниз   Решение


Составьте уравнение плоскости, проходящей через точку M(-2;0;3) параллельно плоскости 2x - y - 3z + 5 = 0 .

ВверхВниз   Решение


Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что:
  а) прямая C1F делит пополам периметр треугольника ABC;
  б) три такие прямые, построенные для каждой стороны треугольника, пересекаются в одной точке.

ВверхВниз   Решение


На сторонах AB, BC и CA треугольника ABC (или на их продолжениях) взяты точки C1, A1 и B1 так, что  ∠(CC1, AB) = ∠(AA1, BC) = ∠(BB1, CA) = α.  Прямые AA1 и BB1, BB1 и CC1, CC1 и AA1 пересекаются в точках C', A', B' соответственно. Докажите, что:
  а) точка пересечения высот треугольника ABC совпадает с центром описанной окружности треугольника A'B'C';
  б) треугольники A'B'C' и ABC подобны, причём коэффициент подобия равен  2 cos α.

ВверхВниз   Решение


Через точку A , лежащую на окружности с центром O, проведены диаметр AB и хорда AC. Докажите, что угол BAC вдвое меньше угла BOC.

ВверхВниз   Решение


На сторонах треугольника ABC внешним образом построены квадраты с центрами A1, B1 и C1. Пусть a1, b1 и c1 – длины сторон треугольника A1B1C1, S и S1 – площади треугольников ABC и A1B1C1. Докажите, что:
  а)  
  б)   S1S = 1/8 (a² + b² + c²).

ВверхВниз   Решение


Автор: Назаров Ф.

В ряд стоят 15 слонов, каждый из которых весит целое число килограммов. Если взять любого слона, кроме стоящего справа, и прибавить к его весу удвоенный вес его правого соседа, то получится 15 тонн (для каждого из 14 слонов). Найдите вес каждого из 15 слонов.

ВверхВниз   Решение


Существует ли ограниченная функция f : такая, что f(1)>0 и f(x) удовлетворяет при всех x,y неравенству

f2(x+y) f2(x)+2f(xy)+f2(y)?

ВверхВниз   Решение


Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.

ВверхВниз   Решение


Кусок сыра надо разрезать на части с соблюдением таких правил:
    вначале режем сыр на два куска, затем один из них режем на два куска, затем один из трёх кусков опять режем на два куска, и т.д.;
    после каждого разрезания части могут быть разными по весу, но отношение веса каждой части к весу любой другой должно быть строго больше заданного числа $R$.
  а) Докажите, что при  $R$ = 0,5  можно резать сыр так, что процесс никогда не остановится (после любого числа разрезаний можно будет отрезать ещё один кусок).
  б) Докажите, что если  $R$ > 0,5,  то процесс резки когда-нибудь остановится.
  в) На какое наибольшее число кусков можно разрезать сыр, если  $R$ = 0,6?

ВверхВниз   Решение


На окружности фиксированы точки P и C; точки A и B перемещаются по окружности так, что угол ACB остается постоянным. Докажите, что прямые Симсона точки P относительно треугольников ABC касаются фиксированной окружности.

ВверхВниз   Решение



Даны три некомпланарных вектора. Существует ли четвертый вектор, перпендикулярный трем данным?

ВверхВниз   Решение


Между некоторыми из 2n городов установлено воздушное сообщение, причём каждый город связан (беспосадочными рейсами) не менее чем с n другими.
  а) Докажите, что если отменить любые  n – 1  рейсов, то всё равно из любого города можно добраться в любой другой на самолётах (с пересадками).
  б) Укажите все случаи, когда связность нарушается при отмене n рейсов.

ВверхВниз   Решение


Докажите, что сумма площадей пяти треугольников, образованных парами соседних сторон и соответствующими диагоналями выпуклого пятиугольника, больше площади всего пятиугольника.

ВверхВниз   Решение



Докажите, что в любой правильной пирамиде все боковые ребра равны.

ВверхВниз   Решение


Дорога протяженностью 1 км полностью освещена фонарями, причем каждый фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее количество фонарей может быть на дороге, если известно, что после выключения любого фонаря дорога будет освещена уже не полностью?

ВверхВниз   Решение


В сумме  + 1 + 3 + 9 + 27 + 81 + 243 + 729  можно вычеркивать любые слагаемые и изменять некоторые знаки перед оставшимися числами с "+" на "–". Маша хочет таким способом сначала получить выражение, значение которого равно 1, затем, начав сначала, получить выражение, значение которого равно 2, затем (снова начав сначала) получить 3, и так далее. До какого наибольшего целого числа ей удастся это сделать без пропусков?

ВверхВниз   Решение


Играют двое. У первого 1000 чётных карточек (2, 4, ..., 2000), у второго – 1001 нечётная (1, 3, ... , 2001). Ходят по очереди, начинает первый. Ход состоит в следующем: игрок, чья очередь ходить, выкладывает одну из своих карточек, а другой, посмотрев на неё, выкладывает одну из своих карточек; тот, у кого число на карточке больше, записывает себе одно очко, а обе выложенные карточки выбрасываются. Всего получается 1000 ходов (одна карточка второго не используется). Какое наибольшее число очков может гарантировать себе каждый из игроков (как бы ни играл его соперник)?

Вверх   Решение

Задача 65395
Темы:    [ Теория игр (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

Играют двое. У первого 1000 чётных карточек (2, 4, ..., 2000), у второго – 1001 нечётная (1, 3, ... , 2001). Ходят по очереди, начинает первый. Ход состоит в следующем: игрок, чья очередь ходить, выкладывает одну из своих карточек, а другой, посмотрев на неё, выкладывает одну из своих карточек; тот, у кого число на карточке больше, записывает себе одно очко, а обе выложенные карточки выбрасываются. Всего получается 1000 ходов (одна карточка второго не используется). Какое наибольшее число очков может гарантировать себе каждый из игроков (как бы ни играл его соперник)?


Решение

  Назовём критическим ход, в котором использована карточка 2001. Докажем, что первый может получать очки на всех ходах второго, кроме, быть может, критического.
  В каждый момент будем обозначать карточки первого  a1 < a2 < ... < an,  а карточки второго –  b1 < b2 < ... < bn+1  (до критического хода  bn+1 = 2001).  При сравнении карточки после хода будем обозначать соответственно Ak и Bk. В начальный момент выполнены неравенства  ak > bk.  Докажем, что до критического хода первый может сохранить эту ситуацию.
  Именно, при своём ходе первый ходит с a1, и у него остаются карточки  Ak = ak+1  (k = 1, 2, ..., n – 1);  при любом ответе для оставшихся у второго карточек выполнено  Bk ≤ bk+1 < Ak.  Если же ход второго и он кладёт bi, то первый кладёт ai (и получает очко). При этом неравенства для оставшихся карточек, очевидно, выполняются.
  После критического хода (независимо от того, чья очередь, первый отдаёт наименьшую карточку), ситуация для первого “улучшается”: теперь выполнены неравенства  ak > bk+1.  Аналогично проверяем, что первый может сохранить эту ситуацию до конца игры: при своём ходе он отдаёт a1, при ходе второго кладёт ak на bk+1a1 на b1).
  Докажем теперь, что второй может получить очки на всех ходах первого плюс на своём последнем ходе. В тех же обозначениях в начале выполнены неравенства  bk+1 > ak.  Действуя аналогично изложенной выше стратегии (при своём ходе – класть b1, при ходе первого класть bk+1 на ak), второй сохраняет эту ситуацию и набирает очки на всех ходах первого. Перед последним ходом у второго остаётся наибольшая на этот момент карточка b2. Положив её, он получает дополнительное очко.


Ответ

Первый – 499 очков, второй – 501.

Замечания

8-9 кл. – 8 баллов, 10-11 кл. – 9 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 25
Дата 2003/2004
вариант
Вариант осенний тур, основной вариант, 10-11 класс
задача
Номер 5
олимпиада
Название Турнир городов
Турнир
Номер 25
Дата 2003/2004
вариант
Вариант осенний тур, основной вариант, 8-9 класс
задача
Номер 7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .