ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найти геометрическое место четвёртых вершин прямоугольников, три вершины которых лежат на двух данных концентрических окружностях, а стороны параллельны двум данным прямым. К некоторому натуральному числу справа последовательно приписали два двузначных числа. Полученное число оказалось равным кубу суммы трёх исходных чисел. Найдите все возможные тройки исходных чисел. Известно, что в кодовом замке исправны только кнопки с номерами 1, 2, 3, а код этого замка трёхзначен и не содержит других цифр. Написать последовательность цифр наименьшей длины, наверняка открывающую этот замок (замок открывается, как только подряд и в правильном порядке нажаты все три цифры его кода). Из всех параллелограммов данной площади найти тот, у которого наибольшая диагональ минимальна. Разрежьте квадрат на 6 частей и сложите из них три одинаковых квадрата.
В треугольник вписана окружность, и точки касания её со сторонами треугольника соединены между собой. В полученный таким образом треугольник вписана новая окружность, точки касания которой со сторонами являются вершинами третьего треугольника, имеющего те же углы, что и первоначальный треугольник. Найти эти углы. В прямоугольной таблице произведение суммы чисел любого столбца на сумму чисел
любой строки равно числу, стоящему на их пересечении. На стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно. Точки M, N, K – середины рёбер соответственно AB, BC,
DD1 параллелепипеда ABCDA1B1C1D1. За круглым столом сидят 2015 человек, каждый из них – либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Им раздали по одной карточке, на каждой карточке написано по числу; при этом все числа на карточках различны. Посмотрев на карточки соседей, каждый из сидящих за столом сказал: "Мое число больше, чем у каждого из двух моих соседей". После этого k из сидящих сказали: "Мое число меньше, чем у каждого из двух моих соседей". При каком наибольшем k это могло случиться? а) Докажите, что основания перпендикуляров, опущенных из точки P описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой (прямая Симсона). б) Основания перпендикуляров, опущенных из некоторой точки P на стороны треугольника или их продолжения, лежат на одной прямой. Докажите, что точка P лежит на описанной окружности треугольника.
Дан выпуклый четырёхугольник площади S. Внутри него выбирается точка и отображается симметрично относительно середин его сторон. Получаются четыре вершины нового четырёхугольника. Найдите его площадь.
Найдите высоту трапеции, у которой основания равны a и b (a < b), угол между диагоналями равен 90o, а угол между продолжениями боковых сторон равен 45o.
В тетраэдр ABCD вписана сфера с центром O, касающаяся его граней BCD, ACD, ABD и ABC в точках A1, B1, C1 и D1 соответственно. 16 карточек с целыми числами от 1 до 16 разложены лицевой стороной вниз в виде таблицы $4\times4$ так, что карточки, на которых записаны соседние числа, лежат рядом (соприкасаются по стороне). Какое наименьшее число карточек нужно одновременно перевернуть, чтобы наверняка определить местоположение всех чисел (как бы ни были разложены карточки)? Существует ли натуральное число, делящееся на 2020, в котором всех цифр 0, 1, 2, ..., 9 поровну? |
Задача 66556
УсловиеСуществует ли натуральное число, делящееся на 2020, в котором всех цифр 0, 1, 2, ..., 9 поровну? РешениеНапример, подходит число 12 123 434 565 679 798 080. Поскольку $2020 = 101 \cdot 20$, а числа $101$ и $20$ взаимно простые, достаточно отдельно убедиться в делимости приведённого числа на $20$ и на $101$. Ясно, что на $20$ оно делится. Чтобы показать, что оно также делится на $101$, можно заметить, что любое число вида $\overline{a0a00{\ldots}0}$ делится на $101$, а наше число представляется в виде суммы чисел такого вида. Комментарий. Перечислим и некоторые другие идеи, которые могут привести к решению. Заметив, что $1111$ кратно $101$, можно прийти к таким ответам, как $111122223333\ldots99990000$. Обнаружив, что $10^{10} + 1$ кратно $101$, можно получить числа вида $12345679801234567980$. Также есть примеры, в которых каждая цифра повторяется по одному разу, такие как $1237548960$.
В подборе этих чисел может помочь признак делимости на $101$, который аналогичен признаку делимости на $11$:
если разбить запись числа на блоки по две цифры (начиная с конца), то знакопеременная сумма полученных двузначных чисел должна быть кратна $101$
(например, $12 - 37 + 54 - 89 + 60 = 0$ кратно $101$). ОтветДа, существует. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке