ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 45]      



Задача 98537

Темы:   [ Пятиугольники ]
[ Правильные многоугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 9,10,11

Высотой пятиугольника назовём отрезок перпендикуляра, опущенного из вершины на противоположную сторону, а медианой – отрезок, соединяющий вершину с серединой противоположной стороны. Известно, что в некотором пятиугольнике равны десять длин – длины всех высот и всех медиан. Докажите, что этот пятиугольник – правильный.

Прислать комментарий     Решение

Задача 98556

Темы:   [ Разрезания на параллелограммы ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 8,9

Имеется много одинаковых прямоугольных картонок размером a×b см, где a и b – целые числа, причём  a < b.  Известно, что из таких картонок можно сложить и прямоугольник 49×51 см, и прямоугольник 99×101 см. Можно ли по этим данным однозначно определить a и b?

Прислать комментарий     Решение

Задача 105127

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Разложение на множители ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 7,8,9

Пусть a, b, c – стороны треугольника. Докажите неравенство  a3 + b3 + 3abc > c3.

Прислать комментарий     Решение

Задача 98532

Темы:   [ Трапеции (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Проективная геометрия (прочее) ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD на боковой стороне AB дана точка K. Через точку A провели прямую l, параллельную прямой KC, а через точку B – прямую m, параллельную прямой KD. Докажите, что точка пересечения прямых l и m лежит на стороне CD.

Прислать комментарий     Решение

Задача 98533

Темы:   [ Произведения и факториалы ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Cлава перемножил первые n натуральных чисел, а Валера перемножил первые m чётных натуральных чисел (n и m больше 1). В результате у них получилось одно и то же число. Докажите, что хотя бы один из мальчиков ошибся.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .