ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Группа психологов разработала тест, пройдя который, каждый человек получает оценку – число Q – показатель его умственных способностей (чем больше Q, тем больше способности). За рейтинг страны принимается среднее арифметическое значений Q всех жителей этой страны.
  а) Группа граждан страны А эмигрировала в страну Б. Покажите, что при этом у обеих стран мог вырасти рейтинг.
  б) После этого группа граждан страны Б (в числе которых могут быть и бывшие эмигранты из А) эмигрировала в страну А. Возможно ли, что рейтинги обеих стран опять выросли?
  в) Группа граждан страны А эмигрировала в страну Б, а группа граждан Б – в страну В. В результате этого рейтинги каждой страны оказались выше первоначальных. После этого направление миграционных потоков изменилось на противоположное – часть жителей В переехала в Б, а часть жителей Б – в А. Оказалось, что в результате рейтинги всех трёх стран опять выросли (по сравнению с теми, которые были после первого переезда, но до начала второго). (Так, во всяком случае, утверждают информационные агентства этих стран.) Может ли такое быть (если да, то как, если нет, то почему)?

(Предполагается, что за рассматриваемое время Q граждан не изменилось, никто не умер и не родился.)

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 65330

Темы:   [ Математическая статистика ]
[ Уравнения в целых числах ]
Сложность: 3-
Классы: 8,9,10,11

В наборе  –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5  замените одно число двумя другими целыми числами так, чтобы дисперсия набора и его среднее не изменились.

Прислать комментарий     Решение

Задача 66034

Тема:   [ Математическая статистика ]
Сложность: 3-
Классы: 7,8,9

Найдите медиану набора длин:  2 м 30 см,  250 мм,  0,02 км,  0,002 км,  2700 см,  2800 мм,  240 см.

Прислать комментарий     Решение

Задача 65300

Темы:   [ Математическая статистика ]
[ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10,11

Служить на подводной лодке может матрос, рост которого не превышает 168 см. Есть четыре команды А, Б, В и Г. Все матросы в этих командах хотят служить на подводной лодке и прошли строгий отбор. Остался последний отбор – по росту.
  В команде А средний рост матросов равен 166 см.
  В команде Б медиана роста матросов равна 167 см.
  В команде В самый высокий матрос имеет рост 169 см.
  В команде Г мода роста матросов равна 167 см.
В какой команде по крайней мере половина матросов точно может служить на подводной лодке?

Прислать комментарий     Решение

Задача 65312

Тема:   [ Математическая статистика ]
Сложность: 3
Классы: 8,9,10,11

В числовом наборе 100 чисел. Если выкинуть одно число, то медиана оставшихся чисел будет равна 78. Если выкинуть другое число, то медиана оставшихся чисел будет 66. Найдите медиану всего набора.

Прислать комментарий     Решение

Задача 65269

Темы:   [ Математическая статистика ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Средние величины ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10,11

В первой четверти у Васи было пять оценок по математике, больше всего среди них пятёрок. При этом оказалось, что медиана всех оценок равна 4, а среднее арифметическое 3,8. Какие оценки могли быть у Васи?

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .