Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 196]
|
|
Сложность: 5- Классы: 9,10,11
|
Две окружности радиуса 1 пересекаются в точках X, Y, расстояние между которыми тоже равно 1. Из точки C одной окружности проведены к другой касательные CA, CB, вторично пересекающие первую окружность в точках B', A'. Прямые AA' и BB' пересекаются в точке Z. Найдите угол XZY.
|
|
Сложность: 5- Классы: 9,10,11
|
Четырёхугольник ABCD вписан в окружность с центром O. Биссектрисы его углов образуют четырёхугольник, вписанный в окружность с центром I, а биссектрисы внешних углов – четырёхугольник, вписанный в окружность с центром J. Докажите, что O – середина отрезка IJ.
|
|
Сложность: 5- Классы: 9,10,11
|
Четырёхугольник ABCD описан около окружности с центром I. Точки M и N – середины диагоналей AC и BD.
Докажите, что четырёхугольник ABCD – вписанный тогда и только тогда, когда IM : AC = IN : BD.
|
|
Сложность: 5- Классы: 8,9,10,11
|
В однокруговом футбольном турнире играли  n > 4 команд. За победу давалось 3 очка, за ничью 1, за проигрыш 0. Оказалось, что все команды набрали поровну очков.
а) Докажите, что найдутся четыре команды, имеющие поровну побед, поровну ничьих и поровну поражений.
б) При каком наименьшем n могут не найтись пять таких команд?
|
|
Сложность: 5- Классы: 9,10,11
|
Стороны треугольника ABC видны из точки T под углами 120°.
Докажите, что прямые, симметричные прямым AT, BT и CT относительно прямых BC, CA и AB соответственно, пересекаются в одной точке.
Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 196]