Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 196]
Радиус описанной окружности треугольника
ABC равен радиусу окружности,
касающейся стороны
AB в точке
C' и продолжений двух других сторон в точках
A' и
B' . Докажите, что центр описанной окружности треугольника
ABC
совпадает с ортоцентром (точкой пересечения высот) треугольника
A'B'C' .
|
|
Сложность: 5- Классы: 10,11
|
Каждое ребро выпуклого многогранника параллельно перенесли на некоторый
вектор так, что ребра образовали каркас нового выпуклого многогранника.
Обязательно ли он равен исходному?
|
|
Сложность: 5- Классы: 10,11
|
Трапеция ABCD вписана в окружность w (AD || BC). Окружности, вписанные в треугольники ABC и ABD, касаются оснований трапеции BC и AD в точках P и Q соответственно. Точки X и Y – середины дуг BC и AD окружности w, не содержащих точек A и B соответственно. Докажите, что прямые XP и YQ пересекаются на окружности w.
|
|
Сложность: 5- Классы: 8,9,10
|
В треугольнике ABC отметили точки A', B' касания сторон BC, AC c вписанной окружностью и точку G пересечения отрезков AA' и BB'. После этого сам треугольник стерли. Восстановите его с помощью циркуля и линейки.
|
|
Сложность: 5- Классы: 10,11
|
Четырёхугольник ABCD описан около окружности с центром I. Касательные к описанной окружности треугольника AIC в точках A, C пересекаются в точке X. Касательные к описанной окружности треугольника BID в точках B, D пересекаются в точке Y. Докажите, что точки X, I, Y лежат на одной прямой.
Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 196]