ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Заславский А.А.

Алексей Александрович Заславский (род.1960 г.) - к.т.н. (1990), старший научный сотрудник ЦЭМИ РАН, председатель жюри олимпиады им. Шарыгина, редактор Journal of Classical Geometry, член редколлегии "Кванта".

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 196]      



Задача 108111

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Признаки и свойства параллелограмма ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5-
Классы: 8,9

Радиус описанной окружности треугольника ABC равен радиусу окружности, касающейся стороны AB в точке C' и продолжений двух других сторон в точках A' и B' . Докажите, что центр описанной окружности треугольника ABC совпадает с ортоцентром (точкой пересечения высот) треугольника A'B'C' .
Прислать комментарий     Решение


Задача 110756

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Примеры и контрпримеры. Конструкции ]
[ Параллельный перенос ]
[ Правильные многогранники (прочее) ]
Сложность: 5-
Классы: 10,11

Каждое ребро выпуклого многогранника параллельно перенесли на некоторый вектор так, что ребра образовали каркас нового выпуклого многогранника. Обязательно ли он равен исходному?
Прислать комментарий     Решение


Задача 64343

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные и описанные окружности ]
[ Поворотная гомотетия (прочее) ]
[ Окружности, вписанные в сегмент ]
[ Теорема синусов ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 5-
Классы: 10,11

Трапеция ABCD вписана в окружность w  (AD || BC).  Окружности, вписанные в треугольники ABC и ABD, касаются оснований трапеции BC и AD в точках P и Q соответственно. Точки X и Y – середины дуг BC и AD окружности w, не содержащих точек A и B соответственно. Докажите, что прямые XP и YQ пересекаются на окружности w.

Прислать комментарий     Решение

Задача 64737

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанные и описанные окружности ]
[ Инверсия помогает решить задачу ]
[ Радикальная ось ]
[ Точка Лемуана ]
[ Угол между касательной и хордой ]
[ Подерный (педальный) треугольник ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 5-
Классы: 8,9,10

В треугольнике ABC отметили точки A', B' касания сторон BC, AC c вписанной окружностью и точку G пересечения отрезков AA' и BB'. После этого сам треугольник стерли. Восстановите его с помощью циркуля и линейки.

Прислать комментарий     Решение

Задача 64881

Темы:   [ Описанные четырехугольники ]
[ Три точки, лежащие на одной прямой ]
[ Инверсия помогает решить задачу ]
[ Точка Лемуана ]
Сложность: 5-
Классы: 10,11

Четырёхугольник ABCD описан около окружности с центром I. Касательные к описанной окружности треугольника AIC в точках A, C пересекаются в точке X. Касательные к описанной окружности треугольника BID в точках B, D пересекаются в точке Y. Докажите, что точки X, I, Y лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 196]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .