Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 196]
|
|
Сложность: 5 Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ $O$ – центр описанной окружности, $BM$ – медиана, $BH$ – высота. Окружности $AOB$ и $BHC$ повторно пересекаются в точке $E$, а окружности $AHB$ и $BOC$ – в точке $F$. Докажите, что $ME=MF$.
|
|
Сложность: 5 Классы: 8,9,10,11
|
Постройте четырёхугольник, в который можно вписать и около которого можно описать окружность, по радиусам этих окружностей и углу между диагоналями.
|
|
Сложность: 5 Классы: 10,11
|
Дан треугольник ABC и точки P и Q. Известно, что треугольники, образованные проекциями P и Q на стороны ABC, подобны (соответствуют друг другу вершины, лежащие на одних и тех же сторонах исходного треугольника). Докажите, что прямая PQ проходит через центр описанной окружности треугольника ABC.
Дан остроугольный треугольник ABC. Для произвольной прямой l обозначим через la, lb, lc прямые, симметричные l относительно сторон треугольника, а через Il – центр вписанной окружности треугольника, образованного этими прямыми. Найдите геометрическое место точек Il.
|
|
Сложность: 5+ Классы: 9,10,11
|
Дан остроугольный треугольник
ABC и точка
P, не совпадающая с точкой пересечения его высот. Докажите, что окружности, проходящие через середины сторон треугольников
PAB,
PAC,
PBC и
ABC, а также окружность, проходящая через проекции точки
P на стороны треугольника
ABC, пересекаются в одной точке.
Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 196]