Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 208]
|
|
|
Сложность: 5 Классы: 9,10,11
|
Диагонали вписанно-описанного четырехугольника $ABCD$ пересекаются в точке $L$. Даны три отрезка, равные $AL$, $BL$, $CL$. Восстановите четырехугольник с помощью циркуля и линейки.
|
|
|
Сложность: 5 Классы: 9,10,11
|
Дан вписанный четырёхугольник $ABCD$. Произвольная окружность, проходящая через точки $C$ и $D$, пересекает прямые $AC$, $BC$ в точках $X$, $Y$ соответственно. Найдите ГМТ пересечения окружностей $CAY$ и $CBX$.
|
|
|
Сложность: 5 Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ $O$ – центр описанной окружности, $BM$ – медиана, $BH$ – высота. Окружности $AOB$ и $BHC$ повторно пересекаются в точке $E$, а окружности $AHB$ и $BOC$ – в точке $F$. Докажите, что $ME=MF$.
|
|
|
Сложность: 5 Классы: 8,9,10,11
|
Постройте четырёхугольник, в который можно вписать и около которого можно описать окружность, по радиусам этих окружностей и углу между диагоналями.
|
|
|
Сложность: 5 Классы: 10,11
|
Дан треугольник ABC и точки P и Q. Известно, что треугольники, образованные проекциями P и Q на стороны ABC, подобны (соответствуют друг другу вершины, лежащие на одних и тех же сторонах исходного треугольника). Докажите, что прямая PQ проходит через центр описанной окружности треугольника ABC.
Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 208]