Страница:
<< 34 35 36 37 38
39 40 >> [Всего задач: 196]
|
|
Сложность: 5+ Классы: 9,10,11
|
Постройте треугольник, если даны центр вписанной в
него окружности, середина одной из сторон и основание опущенной на
эту сторону высоты.
Проекции точки X на стороны четырёхугольника ABCD лежат на одной окружности. Y – точка, симметричная X относительно центра этой окружности. Докажите, что проекции точки B на прямые AX, XC, CY, YA также лежат на одной окружности.
|
|
Сложность: 5+ Классы: 10,11
|
В усеченную треугольную пирамиду вписана сфера, касающаяся оснований в точках $T_1$, $T_2$. Пусть $h$ – высота пирамиды, $R_1$, $R_2$ – радиусы окружностей, описанных около ее оснований, $O_1$, $O_2$ – центры этих окружностей. Докажите, что
$$
R_1R_2h^2=(R_1^2-O_1T_1^2)(R_2^2-O_2T_2^2).
$$
Прямые, содержащие медианы треугольника ABC, вторично пересекают его описанную окружность в точках A1, B1, C1. Прямые, проходящие через A, B, C и параллельные противоположным сторонам, пересекают ее же в точках A2, B2, C2. Докажите, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке.
|
|
Сложность: 5+ Классы: 8,9,10
|
Стороны
BC и
AC треугольника
ABC касаются
соответствующих вневписанных окружностей в точках
A1 ,
B1 .
Пусть
A2 ,
B2 — ортоцентры треугольников
CAA1 и
CBB1 .
Докажите, что прямая
A2B2 перпендикулярна биссектрисе угла
C .
Страница:
<< 34 35 36 37 38
39 40 >> [Всего задач: 196]