ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Заславский А.А.

Алексей Александрович Заславский (род.1960 г.) - к.т.н. (1990), старший научный сотрудник ЦЭМИ РАН, председатель жюри олимпиады им. Шарыгина, редактор Journal of Classical Geometry, член редколлегии "Кванта".

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 208]      



Задача 116688

Темы:   [ Вписанные и описанные окружности ]
[ Свойства биссектрис, конкуррентность ]
[ Ортоцентр и ортотреугольник ]
[ ГМТ - окружность или дуга окружности ]
[ Соображения непрерывности ]
Сложность: 5-
Классы: 8,9,10

Дан треугольник ABC. Прямая l касается вписанной в него окружности. Обозначим через la, lb, lc прямые, симметричные l относительно биссектрис внешних углов треугольника. Докажите, что треугольник, образованный этими прямыми, равен треугольнику ABC.

Прислать комментарий     Решение

Задача 64477

Темы:   [ Пространственные многоугольники ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Проектирование помогает решить задачу ]
[ Теорема о трех перпендикулярах ]
[ Окружности, вписанные в сегмент ]
[ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 10,11

Общие перпендикуляры к противоположным сторонам пространственного четырёхугольника взаимно перпендикулярны.
Докажите, что они пересекаются.

Прислать комментарий     Решение

Задача 66317

Темы:   [ Вписанные и описанные окружности ]
[ Построения одной линейкой ]
[ Вспомогательные подобные треугольники ]
[ Применение проективных преобразований, сохраняющих окружность ]
[ Индукция в геометрии ]
[ Принцип Дирихле (прочее) ]
Сложность: 5
Классы: 10,11

На плоскости нарисованы неравнобедренный треугольник ABC и вписанная в него окружность ω. Пользуясь только линейкой и проведя не более восьми линий, постройте на ω такие точки A′, B′, C′, что лучи B′C′, C′A′, A′B′ проходят через A, B, C соответственно.

Прислать комментарий     Решение

Задача 66584

Темы:   [ Ориентированные графы ]
[ Индукция ]
[ Теория алгоритмов (прочее) ]
Сложность: 5
Классы: 8,9,10,11

В некотором государстве 32 города, каждые два из которых соединены дорогой с односторонним движением. Министр путей сообщения, тайный злодей, решил так организовать движение, что, покинув любой город, в него нельзя будет вернуться. Для этого он каждый день, начиная с 1 июня 2021 года, может менять направление движения на одной из дорог. Докажите, что он сможет добиться своего к 2022 году (то есть за 214 дней).
Прислать комментарий     Решение


Задача 66689

Темы:   [ Переведем данную прямую на бесконечность ]
[ Преобразования плоскости (прочее) ]
[ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 10,11

Даны два треугольника $ABC$ и $A'B'C'$. Прямые $AB$ и $A'B'$ пересекаются в точке $C_1$, а параллельные им прямые, проходящие через $C$ и $C'$, соответственно, в точке $C_2$. Точки $A_1$, $A_2$, $B_1$, $B_2$ определяются аналогично. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 208]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .