ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Алексей Яковлевич Канель-Белов (род. 1963) - известный российский математик, педагог и составитель олимпиадных задач. Доктор физико-математических наук, профессор МИОО и Бар-Иланского университета. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В окружность радиуса 2 вписан тридцатиугольник A1A2...A30. Докажите, что на дугах A1A2, A2A3, ..., A30A1 можно отметить по одной точке (B1, B2, ..., B30 соответственно) так, чтобы площадь шестидесятиугольника A1B1A2B2...A30B30 численно равнялась периметру тридцатиугольника A1A2...A30. Имеется многоугольник. Для каждой стороны поделим её длину на сумму длин всех остальных сторон. Затем сложим все получившиеся дроби. Докажите, что полученная сумма меньше 2. Докажите, что в пространстве существует такое расположение 2001 выпуклого многогранника, что никакие три из многогранников не имеют общих точек, а каждые два касаются друг друга (то есть имеют хотя бы одну граничную точку, но не имеют общих внутренних точек). Диагональ правильного 2006-угольника P называется хорошей, если её концы делят границу P на две части, каждая из которых содержит нечётное число сторон. Стороны P также называются хорошими. Пусть P разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри P. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение? Некоторые участники олимпиады дружат, и дружба взаимна. Назовём группу участников кликой, если все они дружат между собой. Их число называется размером клики. Известно, что максимальный размер клики чётен. Докажите, что участников можно рассадить по двум аудиториям так, что максимальные размеры клик в обеих аудиториях совпадают. Али-Баба и разбойник делят клад, состоящий из 100 золотых монет, разложенных в 10 кучек по 10 монет. Али-Баба выбирает 4 кучки, ставит около каждой из них по кружке, откладывает в каждую кружку по несколько монет (не менее одной, но не всю кучку). Разбойник должен как-то переставить кружки, изменив их первоначальное расположение, после чего монеты высыпаются из кружек в те кучки, около которых оказались кружки. Далее Али-Баба снова выбирает 4 кучки из 10, ставит около них кружки, и т. д. В любой момент Али-Баба может уйти, унеся с собой любые три кучки по выбору. Остальные монеты достаются разбойнику. Какое наибольшее число монет сможет унести Али-Баба, если разбойник тоже старается получить побольше монет? Функции f(x) и g(x) определены на множестве целых чисел, не превосходящих по модулю 1000. Обозначим через m число пар (x, y), для которых Для какого наибольшего n можно придумать две бесконечные в обе стороны последовательности A и B такие, что любой кусок последовательности B длиной n содержится в A, A имеет период 1995, а B этим свойством не обладает (непериодична или имеет период другой длины)? Комментарий. Последовательности могут состоять из произвольных символов. Речь идет о минимальном периоде.
Есть шоколадка в форме равностороннего треугольника со стороной n, разделённая бороздками на равносторонние треугольники со стороной 1. Играют двое. За ход можно отломать от шоколадки треугольный кусок вдоль бороздки, съесть его, а остаток передать противнику. Тот, кто получит последний кусок – треугольник со стороной 1, – победитель. Для каждого n выясните, кто из играющих может всегда выигрывать, как бы не играл противник? Сложите из фигур, изображённых на рисунке, квадрат размером 9×9 с вырезанным в его центре квадратом 3×3. (Фигуры можно не только поворачивать, но и переворачивать.)
Волшебным считается момент, в который число минут на электронных часах совпадает с числом часов. Чтобы сварить волшебное зелье, его надо и поставить на огонь, и снять с огня в волшебные моменты. А чтобы оно получилось вкусным, его надо варить от 1,5 до 2 часов. Сколько времени варится вкусное волшебное зелье? Существует ли выпуклое тело, отличное от шара, ортогональные проекции которого на некоторые три попарно перпендикулярные плоскости являются кругами? На острове рыцарей и лжецов путешественник пришёл в гости к своему знакомому рыцарю и увидел его за круглым столом с пятью гостями.
Каждую вершину выпуклого четырехугольника площади S отразили симметрично относительно диагонали, не
содержащей эту вершину. Обозначим площадь получившегося четырехугольника через S' . Докажите, что
Точки A и B, лежащие на окружности разбивают её на две дуги. Найдите геометрическое место середин всевозможных хорд, концы которых лежат на разных дугах AB. В выпуклом четырёхугольнике ABCD провели биссектрисы la, lb, lc и ld внешних углов при вершинах A, B, C и D соответственно. Точки пересечения прямых la и lb, lb и lc, lc и ld, ld и la обозначили через K, L, M и N. Известно, что три перпендикуляра, опущенных из точки K на AB, из L на BC, из M на CD пересекаются в одной точке. Докажите, что четырёхугольник ABCD – вписанный. Числа от 1 до 1000000 покрашены в два цвета – чёрный и белый. За ход разрешается выбрать любое число от 1 до 1000000 и перекрасить его и все числа, не взаимно простые с ним, в противоположный цвет. Вначале все числа были чёрными. Можно ли за несколько ходов добиться того, что все числа станут белыми? На плоскости отмечены две точки на расстоянии 1. Разрешается, измерив циркулем расстояние между двумя отмеченными точками, провести окружность с центром в любой отмеченной точке с измеренным радиусом. Линейкой разрешается провести прямую через любые две отмеченные точки. При этом отмечаются новые точки – точки пересечения построенных линий. Пусть Ц(n) – наименьшее число линий, проведение которых одним циркулем позволяет получить две отмеченные точки на расстоянии n (n – натуральное). ЛЦ(n) – то же, но циркулем и линейкой. Докажите, что последовательность |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 101]
На плоскости отмечены две точки на расстоянии 1. Разрешается, измерив циркулем расстояние между двумя отмеченными точками, провести окружность с центром в любой отмеченной точке с измеренным радиусом. Линейкой разрешается провести прямую через любые две отмеченные точки. При этом отмечаются новые точки – точки пересечения построенных линий. Пусть Ц(n) – наименьшее число линий, проведение которых одним циркулем позволяет получить две отмеченные точки на расстоянии n (n – натуральное). ЛЦ(n) – то же, но циркулем и линейкой. Докажите, что последовательность
Имеются одна красная и k (k > 1) синих ячеек, а также колода из 2n карт, занумерованных числами от 1 до 2n. Первоначально вся колода лежит в произвольном порядке в красной ячейке. Из любой ячейки можно взять верхнюю карту и переложить её либо в пустую ячейку, либо поверх карты с номером, большим на единицу. При каком наибольшем n можно такими операциями переложить всю колоду в одну из синих ячеек?
Определите наименьшее действительное число M, при котором неравенство |ab(a² – b²) + bc(b² – c²) + ca(c² – a²)| ≤ M(a² + b² + c²)² выполняется для любых действительных чисел a, b, c.
Плоскость разбита на выпуклые семиугольники единичного диаметра. Докажите, что любой круг радиуса 200 пересекает не менее миллиарда из них.
Можно ли расположить бесконечное число равных выпуклых многогранников в слое, ограниченном двумя параллельными плоскостями, так чтобы ни один многогранник нельзя было вынуть из слоя, не сдвигая остальных?
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 101]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке