ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Лев Александрович Емельянов - старший преподаватель Калужского государственного педагогического университета им. К.Э. Циолковского (КГПУ), член жюри Всероссийской олимпиады школьников по математике. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся. Уравнение x² + px + q = 0 имеет корни x1 и x2. Напишите уравнение, корнями которого будут числа y1, y2 равные: а) Касательная в точке A к описанной окружности треугольника ABC пересекает прямую BC в точке E;AD - биссектриса треугольника ABC. Докажите, что AE = ED.
Две окружности радиусов r и R с центрами в точках O1 и O касаются внутренним образом в точке K. В точке A окружности радиуса r проведена касательная, пересекающая окружность радиуса R в точках B и C. Известно, что AC : AB = p и отрезок AC пересекает отрезок OK. Определите: а) при каких условиях на r, R и p возможна такая геометрическая конфигурация; б) длину отрезка BC.
По мнению Тани, в идеальном кофейном напитке должно быть ровно в 9 раз больше кофе, чем молока. У Глеба есть стакан и кружка, а также целая цистерна молока и огромная турка с неограниченным запасом кофе. Аккуратный Глеб может отпить ровно половину содержимого кружки или стакана. Как Глебу приготовить для Тани целый стакан идеального кофейного напитка, если точный объём кружки неизвестен, но он как минимум на $10\%$ больше объёма стакана? Глеб может наливать кофе и молоко в стакан или в кружку, может выливать содержимое, переливать из кружки в стакан или наоборот, отпивать половину содержимого любое конечное количество раз. Периметр прямоугольника равен 40. Какой из таких прямоугольников имеет наибольшую площадь? Окружности $s_1$ и $s_2$ пересекаются в точках $A$ и $B$. Через точку $A$ проводятся всевозможные прямые, вторично пересекающие окружности в точках $P_1$ и $P_2$. Постройте циркулем и линейкой ту прямую, для которой $P_1A\cdot AP_2$ принимает наибольшее значение. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]
Окружности ω1 и ω2 касаются внешним образом в точке P. Через центр ω1 проведена прямая l1, касающаяся ω2. Аналогично прямая l2 касается ω1 и проходит через центр ω2. Оказалось, что прямые l1 и l2 непараллельны. Докажите, что точка P лежит на биссектрисе одного из углов, образованных l1 и l2.
В остроугольном треугольнике ABC проведены высоты AA1 и CC1. Описанная окружность Ω треугольника ABC пересекает прямую A1C1 в точках A' и C'. Касательные к Ω, проведённые в точках A' и C', пересекаются в точке B'. Докажите, что прямая BB' проходит через центр окружности Ω.
Среди пяти внешне одинаковых монет 3 настоящие и две фальшивые, одинаковые по весу, но неизвестно, тяжелее или легче настоящих. Как за наименьшее число взвешиваний найти хотя бы одну настоящую монету?
В выпуклом четырехугольнике $ABCD$ точки $K$, $L$, $M$, $N$ – середины сторон $BC$, $CD$, $DA$, $AB$ соответственно. Отрезки $AK$, $BL$, $CM$, $DN$, пересекаясь, делят друг друга на три части. Оказалось, что отношение длины средней части к длине всего отрезка одно и то же для всех четырех отрезков. Верно ли, что $ABCD$ – параллелограмм?
Дан треугольник $ABC$. Прямая $AB$ касается его вписанной окружности в точке $C'$, а вневписанной, касающейся стороны $BC$, – в точке $C'_a$. Аналогично определяются точки $C'_b$, $C'_c$, $A'$, $A'_a$, $A'_b$, $A'_c$, $B'$, $B'_a$, $B'_b$, $B'_c$. Рассмотрим длины 12 отрезков – высот треугольников $A'B'C'$, $A'_aB'_aC'_a$, $A'_bB'_bC'_b$, $A'_cB'_cC'_c$. а) Какое наибольшее число различных может быть среди них? б) Найдите все возможные количества различных длин.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке