Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Емельянова Т.

Фильтр
Сложность с по   Класс с по  
Выбрано 23 задачи
Версия для печати
Убрать все задачи

Автор: Лифшиц Ю.

Опишите все способы покрасить каждое натуральное число в один из трёх цветов так, чтобы выполнялось условие: если числа a, b и c (не обязательно различные) удовлетворяют условию  2000(a + b) = c,  то они либо все одного цвета, либо трёх разных цветов.

Вниз   Решение


Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите все такие значения α, не превосходящие 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник.

ВверхВниз   Решение


Какое наибольшее число фишек можно поставить на клетки шахматной доски так, чтобы на каждой горизонтали, вертикали и диагонали (не только на главных) находилось чётное число фишек?

ВверхВниз   Решение


Автор: Митькин Д.

Длины сторон треугольника – простые числа. Докажите, что его площадь не может быть целым числом.

ВверхВниз   Решение


Найдите все такие пары квадратных трёхчленов  x² + ax + bx² + cx + d,  что a и b – корни второго трёхчлена, c и d – корни первого.

ВверхВниз   Решение


Докажите, что для любых положительных чисел x и y справедливо неравенство  

ВверхВниз   Решение


Автор: Лифшиц Ю.

Клетки квадрата 9×9 окрашены в красный и белый цвета. Докажите, что найдётся или клетка, у которой ровно два красных соседа по углу, или клетка, у которой ровно два белых соседа по углу (или и то, и другое).

ВверхВниз   Решение


Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?

ВверхВниз   Решение


Автор: Джукич Д.

Найдите все такие натуральные числа n, что для любых двух его взаимно простых делителей a и b число  a + b – 1  также является делителем n.

ВверхВниз   Решение


Найдите все такие числа a, что для любого натурального n число  an(n + 2)(n + 4)  будет целым.

ВверхВниз   Решение


Автор: Калинин А.

Две окружности S1 и S2 касаются внешним образом в точке F. Их общая касательная касается S1 и S2 в точках A и B соответственно. Прямая, параллельная AB, касается окружности S2 в точке C и пересекает окружность S1 в точках D и E. Докажите, что общая хорда описанных окружностей треугольников ABC и BDE, проходит через точку F.

ВверхВниз   Решение


Квадрат n×n ( n 3 ) склеен в цилиндр. Часть клеток покрашена в черный цвет. Докажите, что найдутся две параллельных линии (две горизонтали, две вертикали или две диагонали), содержащие одинаковое количество черных клеток.

ВверхВниз   Решение


Найдите x1000, если  x1 = 4,  x2 = 6,  и при любом натуральном  n ≥ 3  xn – наименьшее составное число, большее   2xn–1xn–2.

ВверхВниз   Решение


Автор: Садыков Р.

На координатной плоскости расположены четыре фишки, центры которых имеют целочисленные координаты. Разрешается сдвинуть любую фишку на вектор, соединяющий центры любых двух из остальных фишек. Докажите, что несколькими такими перемещениями можно совместить любые две наперед заданные фишки.

ВверхВниз   Решение


Докажите, что можно разбить все множество натуральных чисел на 100 непустых подмножеств так, чтобы в любой тройке a, b, c, для которой  a + 99b = c,  нашлись два числа из одного подмножества.

ВверхВниз   Решение


На бесконечном белом листе клетчатой бумаги конечное число клеток окрашено в чёрный цвет так, что у каждой чёрной клетки чётное число (0, 2 или 4) белых клеток, соседних с ней по стороне. Докажите, что каждую белую клетку можно окрасить в красный или зелёный цвет так, чтобы у каждой чёрной клетки стало поровну красных и зелёных клеток, соседних с ней по стороне.

ВверхВниз   Решение


Внутри прямого угла KLM взята точка P. Окружность S1 с центром O1 касается сторон LK и LP угла KLP в точках A и D соответственно, а окружность S2 с центром O2 такого же радиуса касается сторон угла MLP, причём стороны LP – в точке B. Оказалось, что точка O1 лежит на отрезке AB. Пусть C – точка пересечения прямых O2D и KL. Докажите, что BC – биссектриса угла ABD.

ВверхВниз   Решение


На предприятии трудятся 50000 человек. Для каждого из них сумма количества его непосредственных начальников и его непосредственных подчинённых равна 7. В понедельник каждый работник предприятия издаёт приказ и выдаёт копию этого приказа каждому своему непосредственному подчинённому (если такие есть). Далее, каждый день работник берёт все полученные им в предыдущий день приказы и либо раздаёт их копии всем своим непосредственным подчинённым, либо, если таковых у него нет, выполняет приказы сам. Оказалось, что в пятницу никакие бумаги по учреждению не передаются. Докажите, что на предприятии не менее 97 начальников, над которыми нет начальников.

ВверхВниз   Решение


Четырёхугольник с длинами сторон 1, 1, 1 и 2 имеет две параллельные стороны и разбит на четыре одинаковые фигуры (см. рисунок). В результате верхняя сторона разделилась на четыре отрезка. Найдите отношение длины большего отрезка к меньшему.

ВверхВниз   Решение


На стороне AC треугольника ABC отметили произвольную точку D. Точки E и F симметричны точке D относительно биссектрис углов A и C соответственно. Докажите, что середина отрезка EF лежит на прямой A0C0, где A0 и C0 – точки касания вписанной окружности треугольника ABC со сторонами BC и AB соответственно.

ВверхВниз   Решение


Футбольный мяч сшит из 32 лоскутков: белых шестиугольников и чёрных пятиугольников. Каждый чёрный лоскут граничит только с белыми, а каждый белый — с тремя чёрными и тремя белыми. Сколько лоскутков белого цвета?

ВверхВниз   Решение


Три ёжика делили три кусочка сыра массами 5 г, 8 г и 11 г. Лиса стала им помогать. Она может от любых двух кусочков одновременно отрезать и съесть по 1 г сыра. Сможет ли лиса оставить ёжикам равные кусочки сыра?

ВверхВниз   Решение


На стороне AC остроугольного треугольника ABC выбраны точки M и K так, что ∠ABM = ∠CBK.
Докажите, что центры описанных окружностей треугольников ABM, ABK, CBM и CBK лежат на одной окружности.

Вверх   Решение

Все задачи автора

Страница: 1 2 >> [Всего задач: 10]      



Задача 116556

Темы:   [ Вписанные и описанные окружности ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3-
Классы: 9,10

На стороне AC остроугольного треугольника ABC выбраны точки M и K так, что ∠ABM = ∠CBK.
Докажите, что центры описанных окружностей треугольников ABM, ABK, CBM и CBK лежат на одной окружности.

Прислать комментарий     Решение

Задача 65064

Темы:   [ НОД и НОК. Взаимная простота ]
[ Четность и нечетность ]
[ Признаки делимости на 3 и 9 ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Можно ли вместо звёздочек вставить в выражение  НОК(*, *, *) – НОК(*, *, *) = 2009  в некотором порядке шесть последовательных натуральных чисел так, чтобы равенство стало верным?

Прислать комментарий     Решение

Задача 65944

Темы:   [ Развертка помогает решить задачу ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 8,9,10

Оклейте куб в один слой пятью равновеликими выпуклыми пятиугольниками.

Прислать комментарий     Решение

Задача 116585

Темы:   [ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вписанный угол, опирающийся на диаметр ]
[ Векторы помогают решить задачу ]
Сложность: 3+
Классы: 8,9,10

На стороне AC треугольника ABC отметили произвольную точку D. Точки E и F симметричны точке D относительно биссектрис углов A и C соответственно. Докажите, что середина отрезка EF лежит на прямой A0C0, где A0 и C0 – точки касания вписанной окружности треугольника ABC со сторонами BC и AB соответственно.

Прислать комментарий     Решение

Задача 65932

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Вспомогательные подобные треугольники ]
[ Точка Лемуана ]
Сложность: 4-
Классы: 8,9,10

Разрежьте неравносторонний треугольник на четыре подобных треугольника, среди которых не все одинаковы.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .