Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Концевич М.

Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Докажите, что для любого тетраэдра его самый маленький двугранный угол (из шести) не больше чем двугранный угол правильного тетраэдра.

Вниз   Решение


Даны два треугольника ABC и A'B'C', имеющие общие описанную и вписанную окружности, и точка P, лежащая внутри обоих треугольников.
Докажите, что сумма расстояний от P до сторон треугольника ABC равна сумме расстояний от P до сторон треугольника A'B'C'.

ВверхВниз   Решение


Автор: Ягудин М.

Дан тетраэдр ABCD. В грани ABC и ABD вписаны окружности с центрами O1, O2, касающиеся ребра AB в точках T1, T2. Плоскость πAB проходит через середину отрезка T1T2 и перпендикулярна O1O2. Аналогично определяются плоскости πAC, πBC, πAD, πBD, πCD. Докажите, что все эти шесть плоскостей проходят через одну точку.

ВверхВниз   Решение


Автор: Тебо В.

Пусть A1, B1 и C1 — основания высот AA1, BB1 и CC1 треугольника ABC. Докажите, что прямые Эйлера треугольников AB1C1, BA1C1 и CA1B1 пересекаются на окружности девяти точек треугольника ABC.

ВверхВниз   Решение


Найдите необходимые и достаточные условия, которым должны удовлетворять числа a, b, α и β, чтобы прямоугольник размером a×b можно было разрезать на прямоугольники размером α×β. Например, можно ли прямоугольник размером 50×60 разрезать на прямоугольники размером
а) 20×15;   б) 5×8;   в) 6,25×15;   г)  

ВверхВниз   Решение


Пусть $ABC$ – треугольник Понселе, точка $A_1$ симметрична $A$ относительно центра вписанной окружности $I$, точка $A_2$ изогонально сопряжена $A_1$ относительно $ABC$. Найдите ГМТ $A_2$.

ВверхВниз   Решение


На стороне AB выпуклого четырёхугольника ABCD взяты точки K и L (точкаK лежит между A и L), а на стороне CD взяты точки M и N (точка M между C и N). Известно, что  AK = KN = DN  и  BL = BC = CM.  Докажите, что если BCNK – вписанный четырёхугольник, то и ADML тоже вписан.

ВверхВниз   Решение


Даны окружность $\omega$ и не лежащая на ней точка $P$. Пусть $ABC$ – произвольный правильный треугольник, вписанный в $\omega$, а точки $A'$, $B'$, $C'$ – проекции $P$ на прямые $BC$, $CA$, $AB$. Найдите геометрическое место центров тяжести треугольников $A'B'C'$.

ВверхВниз   Решение


Планета "Тетраинкогнито", покрытая "океаном", имеет форму правильного тетраэдра с ребром 900 км.
Какую площадь океана накроет "цунами" через 2 часа после тетратрясения с эпицентром в
  а) центре грани,
  б) середине ребра,
если скорость распространения цунами 300 км/час?

ВверхВниз   Решение


Автор: Борисов Л.

Мудрецу С. сообщили сумму трёх натуральных чисел, а мудрецу П. – их произведение.
– Если бы я знал, – сказал С., – что твоё число больше, чем моё, я бы сразу назвал три искомых числа.
– Мое число меньше, чем твоё, – ответил П., – а искомые числа ..., ... и ... .
Какие числа назвал П.?

ВверхВниз   Решение


Таня сфотографировала четырёх котиков, поедающих сосиски (рис. 1). Вскоре она сделала ещё один кадр (рис. 2). Каждый котик ест свои сосиски непрерывно и с постоянной скоростью, а на чужие не покушается. Кто доест первым и кто последним? Ответ объясните.

ВверхВниз   Решение


Около треугольника ABC описали окружность. A1 – точка пересечения с нею прямой, параллельной BC и проходящей через A. Точки B1 и C1 определяются аналогично. Из точек A1, B1, C1 опустили перпендикуляры на BC, CA, AB соответственно. Докажите, что эти три перпендикуляра пересекаются в одной точке.

ВверхВниз   Решение


Автор: Ратаров Д.

В трапецию $ABCD$ можно вписать окружность и около неё можно описать окружность. От трапеции остались: вершина $A$, центр вписанной окружности $I$, описанная окружность $\omega$ и ее центр $O$. Восстановите трапецию с помощью одной лишь линейки.

ВверхВниз   Решение


В треугольнике АВС проведены высота ВН, медиана ВВ1 и средняя линия А1С1 (А1 лежит на стороне ВС, С1 – на стороне АВ). Прямые А1С1 и ВВ1 пересекаются в точке М, а прямые С1В1 и А1Н – в точке N. Докажите, что прямые MN и BH параллельны.

ВверхВниз   Решение


На бесконечной клетчатой бумаге отмечено шесть клеток (см. рисунок).

На некоторых клетках стоят фишки. Положение фишек разрешается преобразовывать по следующему правилу: если клетки соседняя сверху и соседняя справа от данной фишки обе свободны, то можно поставить в эти клетки по фишке, убрав при этом старую. Ставится цель за некоторое количество таких операций освободить все шесть отмеченных клеток. Можно ли достигнуть этой цели, если
  а) в исходной позиции имеются всего 6 фишек, и они стоят на отмеченных клетках;
  б) в исходной позиции имеется всего одна фишка, и она стоит в левой нижней отмеченной клетке.

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 5]      



Задача 98052

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 7,8,9,10

Докажите, что
   а) если натуральное число n можно представить в виде  n = 4k + 1,  то существуют n нечётных натуральных чисел, сумма которых равна их произведению;
   б) если n нельзя представить в таком виде, то таких n нечётных натуральных чисел не существует.

Прислать комментарий     Решение

Задача 98069

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Преобразования плоскости (прочее) ]
[ Перебор случаев ]
Сложность: 4-
Классы: 8,9,10

Числовая последовательность {xn} такова, что для каждого  n > 1  выполняется условие:  xn+1 = |xn| – xn–1.
Докажите, что последовательность периодическая с периодом 9.

Прислать комментарий     Решение

Задача 98150

Темы:   [ Процессы и операции ]
[ Периодичность и непериодичность ]
[ Осевая и скользящая симметрии (прочее) ]
Сложность: 4
Классы: 8,9

В четырёхугольнике ABCD  AB = BC = CD = 1,  AD не равно 1. Положение точек B и C фиксировано, точки же A и D подвергаются преобразованиям, сохраняющим длины отрезков AB, CD и AD. Новое положение точки A получается из старого зеркальным отражением в отрезке BD, новое положение точки D получается из старого зеркальным отражением в отрезке AC (где A уже новое), затем на втором шагу опять A отражается относительно BD (D уже новое), затем снова преобразуется D, затем аналогично проводится третий шаг, и так далее. Докажите, что на каком-то шагу положение точек совпадает с первоначальным.

Прислать комментарий     Решение

Задача 97775

Темы:   [ Инварианты ]
[ Шахматные доски и шахматные фигуры ]
[ Процессы и операции ]
Сложность: 5
Классы: 9,10,11

На бесконечной клетчатой бумаге отмечено шесть клеток (см. рисунок).

На некоторых клетках стоят фишки. Положение фишек разрешается преобразовывать по следующему правилу: если клетки соседняя сверху и соседняя справа от данной фишки обе свободны, то можно поставить в эти клетки по фишке, убрав при этом старую. Ставится цель за некоторое количество таких операций освободить все шесть отмеченных клеток. Можно ли достигнуть этой цели, если
  а) в исходной позиции имеются всего 6 фишек, и они стоят на отмеченных клетках;
  б) в исходной позиции имеется всего одна фишка, и она стоит в левой нижней отмеченной клетке.

Прислать комментарий     Решение

Задача 97806

Темы:   [ Комбинаторика (прочее) ]
[ Индукция в геометрии ]
[ Алгоритм Евклида ]
[ Соображения непрерывности ]
Сложность: 6
Классы: 9,10,11

k вершин правильного n-угольника закрашены. Закраска называется почти равномерной, если для любого натурального m верно следующее условие: если M1 – множество m расположенных подряд вершин и M2 – другое такое множество, то количество закрашенных вершин в M1 отличается от количества закрашенных вершин в M2 не больше чем на 1. Доказать, что для любых натуральных n и  kn  почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множества.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .