Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шлейфер Р.

Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Дан выпуклый многогранник и точка $K$, не принадлежащая ему. Для каждой точки $M$ многогранника строится шар с диаметром $MK$. Докажите, что в многограннике существует единственная точка, принадлежащая всем таким шарам.

Вниз   Решение


Автор: Saghafian M.

Мортеза отметил на плоскости шесть точек и нашел площади всех 20 треугольников с вершинами в этих точках. Может ли оказаться, что все полученные числа целые, а их сумма равна 2019?

ВверхВниз   Решение


Существуют ли такие
  а) 4 различных натуральных числа;
  б) 5 различных натуральных чисел;
  в) 5 различных целых чисел;
  г) 6 различных целых чисел,
что сумма каждых трёх из них – простое число?

ВверхВниз   Решение


Имеется 21 ненулевое число. Для каждых двух из них вычислены их сумма и произведение. Оказалось, что половина всех сумм положительна и половина – отрицательна. Каково наибольшее возможное количество положительных произведений?

ВверхВниз   Решение


На плоскости даны прямая l и две точки P и Q, лежащие по одну сторону от неё. Найдите на прямой l такую точку M, для которой расстояние между основаниями высот треугольника PQM, опущенных на стороны PM и QM, наименьшее.

ВверхВниз   Решение


  Преподаватель выставил оценки по шкале от 0 до 100. В учебной части могут менять верхнюю границу шкалы на любое другое натуральное число, пересчитывая оценки пропорционально и округляя до целых. Нецелое число при округлении меняется до ближайшего целого; если дробная часть равна 0,5, направление округления учебная часть может выбирать любое, отдельно для каждой оценки. (Например, оценка 37 по шкале 100 после пересчета в шкалу 40 перейдёт в  37·40/100 = 14,8  и будет округлена до 15.)
  Студенты Петя и Вася получили оценки a и b, отличные от 0 и 100. Докажите, что учебная часть может сделать несколько пересчётов так, чтобы у Пети стала оценка b, а у Васи – оценка a (пересчитываются одновременно обе оценки).

ВверхВниз   Решение


Дан фиксированный треугольник ABC. Пусть D – произвольная точка в плоскости треугольника, не совпадающая с его вершинами. Окружность с центром в D, проходящая через A, пересекает вторично прямые AB и AC в точках Ab и Ac соответственно. Аналогично определяются точки Ba, Bc, Ca и Cb. Точку D назовём хорошей, если точки Ab, Ac, Ba, Bc, Ca и Cb лежат на одной окружности.
Сколько может оказаться точек, хороших для данного треугольника ABC?

ВверхВниз   Решение


Автор: Мусин О.

Дан выпуклый четырёхугольник ABCD. Обозначим через Ra, Rb, Rc и Rd радиусы описанных окружностей треугольников DAB, ABC, BCD, CDA. Докажите, что неравенство  Ra < Rb < Rc < Rd  выполняется тогда и только тогда, когда  180° – ∠CDB < ∠CAB < ∠CDB.


ВверхВниз   Решение


Автор: Пешнин А.

Учительница продиктовала Вовочке угловые коэффициенты и свободные члены трёх разных линейных функций, графики которых параллельны. Невнимательный Вовочка при записи каждой из функций поменял местами угловой коэффициент и свободный член и построил графики получившихся функций. Сколько могло получиться точек, через которые проходят хотя бы два графика?

ВверхВниз   Решение


Если из квадратных плиток, которые отличаются только расцветкой, сложить прямоугольник $3\times 4$, как на рисунке, то целиком в нем поместится $6$ черепашек. А сколько черепашек поместится целиком в составленном таким же образом прямоугольнике $20\times 21$?

ВверхВниз   Решение


Автор: Шлейфер Р.

n чисел  (n > 1)  называются близкими, если каждое из них меньше чем сумма всех чисел, делённая на  n – 1.  Пусть  a, b, c, ...   – n близких чисел, S – их сумма. Докажите, что
  а) все они положительны;
  б)  a + b > c;
  в)  a + b > S/n–1.

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 5]      



Задача 98127

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3-
Классы: 7,8,9

Автор: Шлейфер Р.

n чисел  (n > 1)  называются близкими, если каждое из них меньше чем сумма всех чисел, делённая на  n – 1.  Пусть  a, b, c, ...   – n близких чисел, S – их сумма. Докажите, что
  а) все они положительны;
  б)  a + b > c;
  в)  a + b > S/n–1.

Прислать комментарий     Решение

Задача 73809

Темы:   [ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 7,8,9

Автор: Шлейфер Р.

Найдите наименьшее число вида   а)  |11k – 5n|;   б)  |36k – 5n|;   в)  |53k – 37n|,  где k и n – натуральные числа.

Прислать комментарий     Решение

Задача 73827

Темы:   [ Процессы и операции ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 7,8,9

Автор: Шлейфер Р.

На доске выписаны числа от 1 до 50. Разрешено стереть любые два числа и вместо них записать одно число – модуль их разности. После 49-кратного повторения указанной процедуры на доске останется одно число. Какое это может быть число?

Прислать комментарий     Решение

Задача 73786

Темы:   [ Перестройки ]
[ Полуинварианты ]
[ Индукция в геометрии ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 4+
Классы: 7,8,9

Автор: Шлейфер Р.

Дано n фишек нескольких цветов, причём фишек каждого цвета не более n/2. Докажите, что их можно расставить на окружности так, чтобы никакие две фишки одинакового цвета не стояли рядом.
Прислать комментарий     Решение


Задача 73773

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Бином Ньютона ]
[ Индукция (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 5
Классы: 9,10,11

Автор: Шлейфер Р.

Для любого натурального числа n сумма     делится на 2n–1. Докажите это.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .