Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Мартынова Н.

Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Можно ли в пространстве составить замкнутую цепочку из 61 одинаковых согласованно вращающихся шестерёнок так, чтобы углы между сцепленными шестерёнками были не меньше 150°? При этом:
  для простоты шестёренки считаются кругами;
  шестерёнки сцеплены, если соответствующие окружности в точке соприкосновения имеют общую касательную;
  угол между сцепленными шестерёнками – это угол между радиусами их окружностей, проведёнными в точку касания;
  первая шестерёнка должна быть сцеплена со второй, вторая – с третьей, и т. д., 61-я – с первой, а другие пары шестерёнок не должны иметь общих точек.

Вниз   Решение


По рёбрам треугольной пирамиды ползают четыре жука, при этом каждый жук всё время остаётся только в одной грани (в каждой грани – свой жук). Каждый жук обходит границу своей грани в определённом направлении, причём так, что каждые два жука по общему для них ребру ползут в противоположных направлениях. Докажите, что если скорости (возможно, непостоянные) каждого из жуков всегда больше 1 см/с, то когда-нибудь какие-то два жука обязательно встретятся.

ВверхВниз   Решение


Ниже приведён фрагмент мозаики, которая состоит из ромбиков двух видов: "широких" и "узких" (см. рис.).

Нарисуйте, как по линиям мозаики вырезать фигуру, состоящую ровно из 3 "широких" и 8 "узких" ромбиков. (Фигура не должна распадаться на части.)

ВверхВниз   Решение


Автор: Брагин В.

Вершины правильного 45-угольника раскрашены в три цвета, причём вершин каждого цвета поровну. Докажите, что можно выбрать по три вершины каждого цвета так, чтобы три треугольника, образованные выбранными одноцветными вершинами, были равны.

ВверхВниз   Решение


  а) Три богатыря едут верхом по кольцевой дороге против часовой стрелки. Могут ли они ехать неограниченно долго с различными постоянными скоростями, если на дороге есть только одна точка, в которой богатыри имеют возможность обгонять друг друга?
  А если богатырей
  б) десять?
  в) тридцать три?

ВверхВниз   Решение


Положительные числа a, b и c таковы, что  abc = 1.  Докажите неравенство

+ + ≤ 1.

ВверхВниз   Решение


Автор: Шабат Г.Б.

Бесконечная последовательность чисел xn определяется условиями:   xn+1 = 1 – |1 – 2xn|,  причём  0 ≤ x1 ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая  а) в том  б) и только в том случае, когда x1 рационально.

ВверхВниз   Решение


Автор: Брагин В.

Машина ездит по кольцевой трассе по часовой стрелке. В полдень в две разных точки трассы встали два наблюдателя. К какому-то моменту машина проехала возле каждого наблюдателя не менее 30 раз. Первый наблюдатель заметил, что машина проезжала каждый следующий круг ровно на секунду быстрее, чем предыдущий. Второй заметил, что машина проезжала каждый следующий круг ровно на секунду медленнее, чем предыдущий. Докажите, что прошло не менее полутора часов.

ВверхВниз   Решение


Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет ещё одну карту, и так сколько угодно раз, пока сам не скажет "стоп". Может ли Фукс добиться того, чтобы после "стопа" каждая карта наверняка оказалась не там, где была вначале?

ВверхВниз   Решение


На дуге AC описанной окружности правильного треугольника ABC взята точка M, отличная от C, P – середина этой дуги. Пусть N – середина хорды BM, K – основание перпендикуляра, опущенного из точки P на MC. Докажите, что треугольник ANK правильный.

ВверхВниз   Решение


Автор: Тен О.

Даны натуральные числа m и n. Докажите, что число  2n – 1  делится на число  (2m – 1)²  тогда и только тогда, когда число n делится на число  m(2m – 1).

ВверхВниз   Решение


Айрат выписал подряд все числа месяца: 123456789101112... и покрасил три дня (дни рождения своих друзей), никакие два из которых не идут подряд. Оказалось, что все непокрашенные участки состоят из одинакового количества цифр. Докажите, что первое число месяца покрашено.

ВверхВниз   Решение


Докажите, что если  0 < a, b < 1,  то  

.

ВверхВниз   Решение


Пусть AHa и BHb – высоты треугольника ABC, P и Q – проекции точки Ha на стороны AB и AC. Докажите, что прямая PQ делит отрезок HaHb пополам.

ВверхВниз   Решение


Дана клетчатая полоска из 2n клеток, пронумерованных слева направо следующим образом:

1, 2, 3, ..., n, –n, ..., –2, –1

По этой полоске перемещают фишку, каждым ходом сдвигая её на то число клеток, которое указано в текущей клетке (вправо, если число положительно, и влево, если отрицательно). Известно, что фишка, начав с любой клетки, обойдёт все клетки полоски. Докажите, что число  2n + 1  простое.

ВверхВниз   Решение


Внутри параболы  y = x²  расположены несовпадающие окружности ω1, ω2, ω3, ... так, что при каждом n > 1 окружность ωn касается ветвей параболы и внешним образом окружности ωn–1 (см. рис.). Найдите радиус окружности σ1998, если известно, что диаметр ω1 равен 1 и она касается параболы в её вершине.

ВверхВниз   Решение


В шестиугольнике ABCDEF, вписанном в окружность,  AB = BC,  CD = DE,  EF = FA.
Докажите, что площадь треугольника BDF равна половине площади шестиугольника.

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. В точке A к обеим проведены касательные, пересекающие окружности в точках M и N. Прямые BM и BN пересекают окружности еще раз в точках P и Q (P – на прямой BM, Q – на прямой BN). Докажите, что отрезки MP и NQ равны.

ВверхВниз   Решение


Придумайте многогранник, у которого нет трех граней с одинаковым числом сторон.

ВверхВниз   Решение


Разрезать отрезок  [–1, 1]  на чёрные и белые отрезки так, чтобы интегралы от любой  а) линейной функции;  б) квадратного трёхчлена по белым и чёрным отрезкам были равны.

ВверхВниз   Решение


В треугольнике ABC биссектриса угла C пересекает сторону AB в точке M, а биссектриса угла A пересекает отрезок CM в точке T. Оказалось, что отрезки CM и AT разбили треугольник ABC на три равнобедренных треугольника. Найдите углы треугольника ABC.

Вверх   Решение

Все задачи автора

Страница: 1 2 >> [Всего задач: 6]      



Задача 116663

Темы:   [ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

Записаны шесть положительных несократимых дробей, сумма числителей которых равна сумме их знаменателей. Паша перевёл каждую из неправильных дробей в смешанное число. Обязательно ли найдутся два числа, у которых одинаковы либо целые части, либо дробные части?

Прислать комментарий     Решение

Задача 116667

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 7,8

В треугольнике ABC биссектриса угла C пересекает сторону AB в точке M, а биссектриса угла A пересекает отрезок CM в точке T. Оказалось, что отрезки CM и AT разбили треугольник ABC на три равнобедренных треугольника. Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 116669

Тема:   [ Процессы и операции ]
Сложность: 3
Классы: 5,6,7

На складах двух магазинов хранится пшено: на первом складе на 16 тонн больше, чем на втором. Каждую ночь ровно в полночь владелец каждого магазина ворует у своего конкурента четверть имеющегося на его складе пшена и перетаскивает на свой склад. Через 10 ночей воришек поймали. На каком складе в момент их поимки было больше пшена и на сколько?

Прислать комментарий     Решение

Задача 117014

Темы:   [ Разрезания (прочее) ]
[ Правило произведения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 5,6,7

Для игры в шляпу Надя хочет разрезать лист бумаги на 48 одинаковых прямоугольников. Какое наименьшее количество разрезов ей придется сделать, если любые куски бумаги можно перекладывать, но нельзя сгибать, а Надя способна резать одновременно сколько угодно слоёв бумаги? (Каждый разрез – прямая линия от края до края куска.)

Прислать комментарий     Решение

Задача 65630

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 5,6,7

На сколько равных восьмиугольников можно разрезать квадрат размером 8×8? (Все разрезы должны проходить по линиям сетки.)

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .