Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Купцов Л.

Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Автор: Калинин А.

Докажите, что уравнение  x³ + y³ = 4(x²y + xy² + 1)  не имеет решений в целых числах.

Вниз   Решение


В таблице 2×n расставлены положительные числа так, что в каждом из n столбцов сумма двух чисел равна 1.
Докажите, что можно вычеркнуть по одному числу в каждом столбце так, чтобы в каждой строке сумма оставшихся чисел не превосходила  n+1/4.

ВверхВниз   Решение


В некоторые 16 клеток доски 8×8 поставили по ладье. Какое наименьшее количество пар бьющих друг друга ладей могло при этом оказаться?

ВверхВниз   Решение


Пусть P(x) – квадратный трёхчлен с неотрицательными коэффициентами.
Докажите, что для любых действительных чисел x и y справедливо неравенство  (P(xy))² ≤ P(x²)P(y²).

ВверхВниз   Решение


Найдите все такие числа a, что для любого натурального n число  an(n + 2)(n + 3)(n + 4)  будет целым.

ВверхВниз   Решение


В 12 часов дня "Запорожец" и "Москвич" находились на расстоянии 90 км и начали двигаться навстречу друг другу с постоянной скоростью. Через два часа они снова оказались на расстоянии 90 км. Незнайка утверждает, что "Запорожец" до встречи с "Москвичом" и "Москвич" после встречи с "Запорожцем" проехали в сумме 60 км. Докажите, что он неправ.

ВверхВниз   Решение


Найдите какой-нибудь многочлен с целыми коэффициентами, корнем которого является число   + .

ВверхВниз   Решение


Автор: Дужин С.В.

Улицы города Дужинска – простые ломаные, не пересекающиеся между собой во внутренних точках. Каждая улица соединяет два перекрёстка и покрашена в один из трёх цветов: белый, красный или синий. На каждом перекрёстке сходятся ровно три улицы, по одной каждого цвета. Перекрёсток называется положительным, если при его обходе против часовой стрелки цвета улиц идут в следующем порядке: белый, синий, красный, и отрицательным в противном случае. Докажите, что разность между числом положительных и числом отрицательных перекрёстков кратна 4.

ВверхВниз   Решение


Автор: Купцов Л.

Докажите, что в арифметической прогрессии с первым членом, равным 1, и разностью, равной 729, найдётся бесконечно много членов, являющихся степенью числа 10.

ВверхВниз   Решение


Правильный шестиугольник со стороной 5 разбит прямыми, параллельными его сторонам, на правильные треугольники со стороной 1 (см. рис.).

Назовём узлами вершины всех таких треугольников. Известно, что более половины узлов отмечено. Докажите, что найдутся пять отмеченных узлов, лежащих на одной окружности.

ВверхВниз   Решение


Внутри квадрата ABCD взята точка M. Докажите, что точки пересечения медиан треугольников  ABM, BCM, CDM и DAM образуют квадрат.

ВверхВниз   Решение


Автор: Купцов Л.

Из центра симметрии двух равных пересекающихся окружностей проведены два луча, пересекающие окружности в четырех точках, не лежащих на одной прямой. Докажите, что эти точки лежат на одной окружности.

Вверх   Решение

Все задачи автора

Страница: 1 2 >> [Всего задач: 8]      



Задача 109635

Темы:   [ Арифметическая прогрессия ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
[ Признаки делимости на 3 и 9 ]
Сложность: 4-
Классы: 9,10

Автор: Купцов Л.

Докажите, что в арифметической прогрессии с первым членом, равным 1, и разностью, равной 729, найдётся бесконечно много членов, являющихся степенью числа 10.

Прислать комментарий     Решение

Задача 55134

Темы:   [ Отношение площадей подобных треугольников ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Автор: Купцов Л.

Два треугольника A1B1C1 и A2B2C2, площади которых равны соответственно S1 и S2, расположены так, что лучи A1B1 и A2B2, B1C1 и B2C2, C1A1 и C2A2 противоположно направлены. Найдите площадь треугольника с вершинами в серединах отрезков A1A2, B1B2, C1C2.

Прислать комментарий     Решение


Задача 55782

Темы:   [ Гомотетия помогает решить задачу ]
[ Описанные четырехугольники ]
[ Общая касательная к двум окружностям ]
[ Центр масс ]
Сложность: 4
Классы: 8,9

Автор: Купцов Л.

На плоскости расположены три окружности Ω1, Ω2, Ω3 радиусов r1, r2, r3 соответственно – каждая вне двух других, причём  r1 > r2  и   r1 > r3. Из точки пересечения общих внешних касательных к окружностям Ω1 и Ω2 проведены касательные к окружности Ω3, а из точки пересечения общих внешних касательных к окружностям Ω1 и Ω3 проведены касательные к окружности Ω2. Докажите, что последние две пары касательных образуют четырёхугольник, в который можно вписать окружность, и найдите её радиус.

Прислать комментарий     Решение

Задача 109516

Темы:   [ Свойства симметрии и центра симметрии ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Четыре точки, лежащие на одной окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Купцов Л.

Из центра симметрии двух равных пересекающихся окружностей проведены два луча, пересекающие окружности в четырех точках, не лежащих на одной прямой. Докажите, что эти точки лежат на одной окружности.
Прислать комментарий     Решение


Задача 52505

Темы:   [ Поворот помогает решить задачу ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4+
Классы: 8,9

Автор: Купцов Л.

Дан правильный треугольник ABC. Некоторая прямая, параллельная прямой AC, пересекает прямые AB и BC в точках M и P соответственно. Точка D — центр правильного треугольника PMB, точка E — середина отрезка AP. Найдите углы треугольника DEC.

Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .