Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Прасолов В.В.

Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В примере на сложение двух чисел первое слагаемое меньше суммы на 2000, а сумма больше второго слагаемого на 6.
Восстановите пример.

Вниз   Решение


Дан равносторонний треугольник АВС. Точка К – середина стороны АВ, точка М лежит на стороне ВС, причём  ВМ : МС = 1 : 3.  На стороне АС выбрана точка P так, что периметр треугольника РКМ – наименьший из возможных. В каком отношении точка Р делит сторону АС?

ВверхВниз   Решение


У листа бумаги только один ровный край. Лист согнули, потом разогнули обратно. A – общая точка ровного края и линии сгиба. Постройте перпендикуляр к этой линии в точке A. Сделайте это без помощи чертёжных инструментов, а лишь перегибая бумагу.

ВверхВниз   Решение


В треугольнике ABC угол A равен 60o . Пусть BB1 и CC1  — биссектрисы этого треугольника. Докажите, что точка, симметричная вершине A относительно прямой B1C1 , лежит на стороне BC .

ВверхВниз   Решение


Можно ли при каком-то натуральном k разбить все натуральные числа от 1 до k на две группы и выписать числа в каждой группе подряд в некотором порядке так, чтобы получились два одинаковых числа?

ВверхВниз   Решение


Решите систему уравнений:
    1/x + 1/y = 6,
    1/y + 1/z = 4,
    1/z + 1/x = 5.

ВверхВниз   Решение


Составьте квадрат, используя ровно четыре из пяти изображенных ниже фигур. Каждую из четырех выбранных Вами фигур можно использовать только один раз.

ВверхВниз   Решение


Имеется набор гирь со следующими свойствами:

  1. В нем есть 5 гирь, попарно различных по весу.
  2. Для любых двух гирь найдутся две другие гири того же суммарного веса.
Какое наименьшее число гирь может быть в этом наборе?

ВверхВниз   Решение


Докажите, что найдутся четыре таких целых числа a, b, c, d, по модулю больших 1000000, что  1/a + 1/b + 1/c + 1/d = 1/abcd.

ВверхВниз   Решение


Докажите, что  rrc $ \leq$ c2/4.

ВверхВниз   Решение


Пусть a, b, c – длины сторон BC, AC, AB треугольника ABC,  γ = ∠C.  Докажите, что  c ≥ (a + b) sin γ/2.

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 108611

Темы:   [ Неравенства для элементов треугольника. ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Пусть a, b, c – длины сторон BC, AC, AB треугольника ABC,  γ = ∠C.  Докажите, что  c ≥ (a + b) sin γ/2.

Прислать комментарий     Решение

Задача 98452

Темы:   [ Системы точек и отрезков (прочее) ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 10,11

Можно ли отметить на числовой оси 50 отрезков (быть может, перекрывающихся) так, что их длины – 1, 2, 3, ... , 50, а их концы – все целые точки от 1 до 100 включительно?

Прислать комментарий     Решение

Задача 108058

Темы:   [ Метод координат ]
[ Отношение, в котором биссектриса делит сторону ]
[ Центр масс ]
Сложность: 3+
Классы: 8,9

Стороны треугольника равны 3, 4 и 5. Биссектрисы внешних углов треугольника продолжены до пересечения с продолжениями сторон.
Докажите, что одна из трёх полученных точек есть середина отрезка, соединяющего две другие.

Прислать комментарий     Решение

Задача 79391

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Иррациональные уравнения ]
Сложность: 4-
Классы: 8,9,10

Дано число x, большее 1. Обязательно ли имеет место равенство

[$\displaystyle \sqrt{[\sqrt{x}]}$] = [$\displaystyle \sqrt{\sqrt{x}}$]?

Прислать комментарий     Решение

Задача 98149

Темы:   [ Тождественные преобразования ]
[ Целочисленные и целозначные многочлены ]
Сложность: 4-
Классы: 8,9,10

Можно ли подобрать два многочлена P(x) и Q(x) с целыми коэффициентами так, что  P – QP и  P + Q  – квадраты некоторых многочленов (причём Q не получается умножением P на число)?

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .