ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что произвольный треугольник можно разрезать на три многоугольника, один из которых должен быть тупоугольным треугольником, так, чтобы потом сложить из них прямоугольник. (Переворачивать части можно). |
Страница: 1 2 3 4 5 >> [Всего задач: 24]
Докажите, что для любых действительных чисел a и b справедливо неравенство a² + ab + b² ≥ 3(a + b – 1).
Найдите наибольшее натуральное число, из которого вычеркиванием цифр нельзя получить число, кратное 11.
На сторонах AB и BC треугольника ABC выбраны точки M и N соответственно. Отрезки AN и CM пересекаются в точке O, причём AO = CO. Обязательно ли треугольник ABC равнобедренный, если а) AM = CN; б) BM = BN?
В колоде n карт. Часть из них лежит рубашками вверх, остальные – рубашками вниз. За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить ее сверху колоды. За какое наименьшее число ходов при любом начальном расположении карт можно добиться того, чтобы все карты лежали рубашками вниз?
Докажите, что уравнение x³ + y³ = 4(x²y + xy² + 1) не имеет решений в целых числах.
Страница: 1 2 3 4 5 >> [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке