Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Дан квадратный лист бумаги со стороной 1. Отмерьте на этом листе расстояние ⅚ (лист можно сгибать, в том числе, по любому отрезку с концами на краях бумаги и разгибать обратно; после разгибания на бумаге остаётся след от линии сгиба).

Вниз   Решение


Автор: Фольклор

B некотором треугольнике биссектрисы двух внутренних углов продолжили до пересечения с описанной окружностью и получили две равные хорды. Bерно ли, что треугольник равнобедренный?

ВверхВниз   Решение


Расставьте по кругу четыре единицы, три двойки и три тройки так, чтобы сумма любых трёх подряд стоящих чисел не делилась на 3.

ВверхВниз   Решение


30 тремя одинаковыми цифрами. Число 30 запишите в виде четырех различных выражений, из трех одинаковых цифр каждое. Цифры могут быть соединены знаками действий.

ВверхВниз   Решение


Диагонали вписанного четырехугольника ABCD пересекаются в точке K.
Докажите, что касательная в точке K к описанной окружности треугольника ABK, параллельна CD.

ВверхВниз   Решение


Прямая a пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от a и не пересекающих a.
Bерно ли, что a перпендикулярна α?

ВверхВниз   Решение


Квадрат и прямоугольник одинакового периметра имеют общий угол. Докажите, что точка пересечения диагоналей прямоугольника лежит на диагонали квадрата.

ВверхВниз   Решение


Трапеция ABCD и параллелограмм MBDK расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь серой части равна сумме площадей черных частей.

ВверхВниз   Решение


Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 97815

Темы:   [ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9

Рассматриваются девятизначные числа, состоящие из неповторяющихся цифр от 1 до 9 в разном порядке. Пара таких чисел называется кондиционной, если их сумма равна 987654321.
  а) Доказать, что найдутся хотя бы две кондиционные пары   ((a, b)  и  (b, a)  – одна и та же пара).
  б) Доказать, что кондиционных пар – нечётное число.

Прислать комментарий     Решение

Задача 97822

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Через P(x) обозначается произведение всех цифр натурального числа x, через S(x) – сумма цифр числа x.
Сколько решений имеет уравнение:   P(P(x)) + P(S(x)) + S(P(x)) + S(S(x)) = 1984 ?

Прислать комментарий     Решение

Задача 97825

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

На уроке танцев 15 мальчиков и 15 девочек построили двумя параллельными колоннами, так что образовалось 15 пар. В каждой паре измерили разницу роста мальчика и девочки (разница берётся по абсолютной величине, то есть из большего вычитают меньшее). Максимальная разность оказалась 10 см. В другой раз перед образованием пар каждую колонну предварительно построили по росту. Докажите, что максимальная разность будет не больше 10 см.

Прислать комментарий     Решение

Задача 97826

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Рассматриваются  4(N – 1)  граничных клеток таблицы размером N×N. Нужно вписать в эти клетки последовательные  4(N – 1)  целых чисел так, чтобы сумма чисел в вершинах любого прямоугольника со сторонами, параллельными диагоналям таблицы, в том числе и в "вырожденных" прямоугольниках – диагоналях, равнялась одному и тому же числу (для прямоугольников суммируются четыре числа, для диагоналей – два числа). Возможно ли это? Рассмотрите случаи:
  а)  N = 3;
  б)  N = 4;
  в)  N = 5.

Прислать комментарий     Решение

Задача 97831

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Разные задачи на разрезания ]
Сложность: 3+
Классы: 7,8,9

Автор: Фомин С.В.

Из листа клетчатой бумаги размером 29×29 клеточек вырезали 99 квадратиков 2×2 (режут по линиям).
Доказать, что из оставшейся части листа можно вырезать ещё хотя бы один такой же квадратик.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .