Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Треугольник ABC вписан в окружность с центром в O . X "– произвольная точка внутри треугольника ABC , такая, что XAB= XBC=ϕ , а P – такая точка, что PX OX , XOP=ϕ , причем углы XOP и XAB одинаково ориентированы. Докажите, что все такие точки P лежат на одной прямой.

Вниз   Решение


Можно ли в таблице 6×6 расставить числа 0, 1 и -1 так, чтобы все суммы по вертикалям, горизонталям и двум диагоналям были различны?

ВверхВниз   Решение


Таня стоит на берегу речки. У неё есть два глиняных кувшина: один — на 5 литров, а про второй Таня помнит лишь то, что он вмещает то ли 3, то ли 4 литра. Помогите Тане определить ёмкость второго кувшина. (Заглядывая в кувшин, нельзя понять, сколько в нём воды.)

ВверхВниз   Решение


Дядька Черномор написал на листке бумаги число 20 и отдал листок тридцати трём богатырям. Каждый богатырь (по очереди) либо прибавил к числу единицу, либо отнял единицу. Могло ли в результате получиться число 10?

ВверхВниз   Решение


В данную окружность вписать прямоугольник так, чтобы две данные точки внутри окружности лежали на сторонах прямоугольника.

ВверхВниз   Решение


Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?

ВверхВниз   Решение


В пространстве заданы три луча: DA, DB и DC, имеющие общее начало D, причём ∠ADB = ∠ADC = ∠BDC = 90°. Сфера пересекает луч DA в точках A1 и A2, луч DB – в точках B1 и B2, луч DC – в точках C1 и C2. Найдите площадь треугольника A2B2C2, если площади треугольников DA1B1, DA1C1, DB1C1 и DA2B2 равны соответственно , 10, 6 и 40.

ВверхВниз   Решение


Решить уравнение  (x² – x + 1)4 – 10x²(x² – x + 1)² + 9x4 = 0.

ВверхВниз   Решение


На юбилей 57-й школы Московский Монетный Двор выпустил юбилейные монеты достоинством в 57 копеек. А на юбилей 239-й школы монеты достоинством в 239 копеек выпустил Санкт-Петербургский Монетный Двор. Чтобы никому не было обидно, количество денег, выпущенных оба раза, было одинаково. Смогут ли Олег и 36 его друзей разделить все выпущенные монеты так, чтобы каждому досталось одинаковое количество монет?

ВверхВниз   Решение


Сколько нулей, единиц, троек? Подряд выписаны все целые числа от 1 до 100. Сколько раз в этой записи встречаются цифры: а) нуль? б) единица; в)три?

ВверхВниз   Решение


Сумма пяти чисел равна 200. Докажите, что их произведение не может оканчиваться на 1999.

ВверхВниз   Решение


Две окружности пересекаются в точках P и Q . Третья окружность с центром в точке P пересекает первую в точках A и B , а вторую – в точках C и D (см.рисунок). Докажите что углы AQD и BQC равны.

Вверх   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 132]      



Задача 109176

Темы:   [ Отрезок, соединяющий середины ребер ]
[ Неравенство треугольника (прочее) ]
[ Длины и периметры (геометрические неравенства) ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 10,11

Середины противоположных рёбер тетраэдра соединены. Доказать, что сумма трёх полученных отрезков меньше полусуммы рёбер тетраэдра.
Прислать комментарий     Решение


Задача 109178

Темы:   [ Теория алгоритмов (прочее) ]
[ Взвешивания ]
Сложность: 4
Классы: 8,9,10

36 т груза упаковано в мешки вместимостью не более 1 т. Доказать, что четырёхтонный грузовой автомобиль за 11 поездок может перевезти этот груз.
Прислать комментарий     Решение


Задача 109184

Темы:   [ Десятичная система счисления ]
[ Деление с остатком ]
Сложность: 4
Классы: 8,9,10

Найти наименьшее натуральное число A, удовлетворяющее следующим условиям:
  а) его запись оканчивается цифрой 6;
  б) при перестановке цифры 6 из конца числа в его начало оно увеличивается в четыре раза.

Прислать комментарий     Решение

Задача 52479

Темы:   [ Диаметр, основные свойства ]
[ Наименьший или наибольший угол ]
[ Неравенства с углами ]
[ Принцип Дирихле (углы и длины) ]
[ Общие четырехугольники ]
Сложность: 4
Классы: 8,9

На сторонах выпуклого четырёхугольника как на диаметрах построены четыре круга. Докажите, что они покрывают весь четырёхугольник.

Прислать комментарий     Решение


Задача 54585

Темы:   [ Построение треугольников по различным элементам ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 8,9

Постройте треугольник по двум сторонам и биссектрисе, проведённым из одной вершины.

Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .