ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Разрежьте какой-нибудь квадрат на квадратики двух разных размеров так, чтобы маленьких было столько же, сколько и больших. |
Страница: << 133 134 135 136 137 138 139 >> [Всего задач: 1982]
В пространстве имеются четыре различные прямые, окрашенные в два цвета: две красные и две синие, причём любая красная прямая перпендикулярна любой синей прямой. Докажите, что либо красные, либо синие прямые параллельны.
В треугольнике ABC на сторонах AB, BC и AC взяты соответственно точки M, K и L так, что прямая MK параллельна прямой AC и ML параллельна BC. При этом отрезок BL пересекает отрезок MK в точке P, а AK пересекает ML в точке Q. Докажите, что отрезки PQ и AB параллельны.
Найдите все простые числа р, q, r, удовлетворяющие равенству pq + qp = r.
Может ли во время шахматной партии на каждой из 30 диагоналей оказаться нечётное число фигур?
В квадратной таблице из 9×9 клеток отмечены 9 клеток, лежащие на пересечении второй, пятой и восьмой строк со вторым, пятым и восьмым столбцами. Сколькими путями можно из левой нижней клетки попасть в правую верхнюю, двигаясь только по неотмеченным клеткам вверх или вправо?
Страница: << 133 134 135 136 137 138 139 >> [Всего задач: 1982]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке