Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Треугольник ABC вписан в окружность с центром в O . X "– произвольная точка внутри треугольника ABC , такая, что XAB= XBC=ϕ , а P – такая точка, что PX OX , XOP=ϕ , причем углы XOP и XAB одинаково ориентированы. Докажите, что все такие точки P лежат на одной прямой.

Вниз   Решение


Можно ли в таблице 6×6 расставить числа 0, 1 и -1 так, чтобы все суммы по вертикалям, горизонталям и двум диагоналям были различны?

ВверхВниз   Решение


Таня стоит на берегу речки. У неё есть два глиняных кувшина: один — на 5 литров, а про второй Таня помнит лишь то, что он вмещает то ли 3, то ли 4 литра. Помогите Тане определить ёмкость второго кувшина. (Заглядывая в кувшин, нельзя понять, сколько в нём воды.)

ВверхВниз   Решение


Дядька Черномор написал на листке бумаги число 20 и отдал листок тридцати трём богатырям. Каждый богатырь (по очереди) либо прибавил к числу единицу, либо отнял единицу. Могло ли в результате получиться число 10?

ВверхВниз   Решение


В данную окружность вписать прямоугольник так, чтобы две данные точки внутри окружности лежали на сторонах прямоугольника.

ВверхВниз   Решение


Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?

ВверхВниз   Решение


В пространстве заданы три луча: DA, DB и DC, имеющие общее начало D, причём ∠ADB = ∠ADC = ∠BDC = 90°. Сфера пересекает луч DA в точках A1 и A2, луч DB – в точках B1 и B2, луч DC – в точках C1 и C2. Найдите площадь треугольника A2B2C2, если площади треугольников DA1B1, DA1C1, DB1C1 и DA2B2 равны соответственно , 10, 6 и 40.

ВверхВниз   Решение


Решить уравнение  (x² – x + 1)4 – 10x²(x² – x + 1)² + 9x4 = 0.

ВверхВниз   Решение


На юбилей 57-й школы Московский Монетный Двор выпустил юбилейные монеты достоинством в 57 копеек. А на юбилей 239-й школы монеты достоинством в 239 копеек выпустил Санкт-Петербургский Монетный Двор. Чтобы никому не было обидно, количество денег, выпущенных оба раза, было одинаково. Смогут ли Олег и 36 его друзей разделить все выпущенные монеты так, чтобы каждому досталось одинаковое количество монет?

ВверхВниз   Решение


Сколько нулей, единиц, троек? Подряд выписаны все целые числа от 1 до 100. Сколько раз в этой записи встречаются цифры: а) нуль? б) единица; в)три?

ВверхВниз   Решение


Сумма пяти чисел равна 200. Докажите, что их произведение не может оканчиваться на 1999.

ВверхВниз   Решение


Две окружности пересекаются в точках P и Q . Третья окружность с центром в точке P пересекает первую в точках A и B , а вторую – в точках C и D (см.рисунок). Докажите что углы AQD и BQC равны.

Вверх   Решение

Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 6702]      



Задача 102716

Тема:   [ Метод координат на плоскости ]
Сложность: 3-
Классы: 8,9

Составьте уравнение прямой, проходящей через точку M(- 3;2) параллельно прямой 2x - 3y + 4 = 0.

Прислать комментарий     Решение


Задача 116354

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3-
Классы: 8,9,10

В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BL и AK пересекаются в точке O. Найдите площадь четырёхугольника CKOL.

Прислать комментарий     Решение

Задача 116360

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства касательной ]
[ Две касательные, проведенные из одной точки ]
[ Теорема синусов ]
Сложность: 3-
Классы: 8,9,10

Найдите радиусы вписанной и вневписанных окружностей треугольника со сторонами 3, 4, 5.
Прислать комментарий     Решение


Задача 52357

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Признаки подобия ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3-
Классы: 8,9

AA1 и BB1 – высоты остроугольного треугольника ABC. Докажите, что:
  а) треугольник AA1C подобен треугольнику BB1C;
  б) треугольник ABC подобен треугольнику A1B1C.
  в) Найдите коэффициент подобия треугольников A1B1C и ABC, если  ∠C = γ.

Прислать комментарий     Решение

Задача 52378

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

В треугольнике ABC  AB = BC = 6.  На стороне AB как на диаметре построена окружность, пересекающая сторону BC в точке D так, что  BD : DC = 2 : 1.
Найдите AC.

Прислать комментарий     Решение

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .