Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

В выпуклом пятиугольнике ABCDE сторона AB перпендикулярна стороне CD, а сторона BC – стороне DE.
Докажите, что если  AB = AE = ED = 1,  то  BC + CD  < 1.

Вниз   Решение


На стороне AC треугольника ABC взята точка D так, что AD:DC=1:2 . Докажите, что у треугольников ADB и CDB есть по равной медиане.

ВверхВниз   Решение


Первый рабочий за час делает на 2 детали больше, чем второй рабочий, и заканчивает работу над заказом, состоящим из 621 деталей, на 4 часа раньше, чем второй рабочий выполняет заказ, состоящий из 675 таких же деталей. Сколько деталей делает в час первый рабочий?

ВверхВниз   Решение


MA и MB – касательные к окружности O,; C – точка внутри окружности, лежащая на дуге AB с центром в точке M . Доказать, что отличные от A и B точки пересечения прямых AC и BC с окружностью O лежат на противоположных концах одного диаметра.

ВверхВниз   Решение


Точка M – середина хорды AB. Хорда CD пересекает AB в точке M. На отрезке CD как на диаметре построена полуокружность. Точка E лежит на этой полуокружности, и ME – перпендикуляр к CD. Найдите угол AEB.

ВверхВниз   Решение


В выпуклом четырёхугольнике, не являющемся параллелограммом, две противоположные стороны равны.
Докажите, что прямая, проходящая через середины его диагоналей, образует равные углы с этими сторонами.

ВверхВниз   Решение


Автор: Фольклор

Пятеро друзей скинулись на покупку. Могло ли оказаться так, что каждые два из них внесли менее одной трети общей стоимости?

ВверхВниз   Решение


Первый рабочий за час делает на 3 детали больше, чем второй рабочий, и заканчивает работу над заказом, состоящим из 667 деталей, на 6 часов раньше, чем второй рабочий выполняет заказ, состоящий из 754 таких же деталей. Сколько деталей делает в час первый рабочий?

ВверхВниз   Решение


Решить систему уравнений

    1 − x1x2x3 = 0,
    1 + x2x3x4 = 0,
    1 − x3x4x5 = 0,
    1 + x4x5x6 = 0,
      ...
    1 − x47x48x49 = 0,
    1 + x48x49x50 = 0,
    1 − x49x50x1 = 0,
    1 + x50x1x2 = 0.

ВверхВниз   Решение


На сторонах AB и BC треугольника ABC выбраны точки K и L соответственно, причём  ∠KCB = ∠ LAB = α.  Из точки B опущены перпендикуляры BD и BE на прямые AL и CK соответственно. Точка F – середина стороны AC. Найдите углы треугольника DEF.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 56934

 [Прямая Симсона]
Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Прямая Симсона ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

а) Докажите, что основания перпендикуляров, опущенных из точки P описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой (прямая Симсона).

б) Основания перпендикуляров, опущенных из некоторой точки P на стороны треугольника или их продолжения, лежат на одной прямой. Докажите, что точка P лежит на описанной окружности треугольника.

Прислать комментарий     Решение

Задача 56935

Тема:   [ Прямая Симсона ]
Сложность: 5
Классы: 8,9,10

Точки A, B и C лежат на одной прямой, точка P — вне этой прямой. Докажите, что центры описанных окружностей треугольников  ABP, BCP, ACP и точка P лежат на одной окружности.
Прислать комментарий     Решение


Задача 56936

Тема:   [ Прямая Симсона ]
Сложность: 5
Классы: 9

В треугольнике ABC проведена биссектриса AD и из точки D опущены перпендикуляры DB' и DC' на прямые AC и AB; точка M лежит на прямой B'C', причем  DM $ \perp$ BC. Докажите, что точка M лежит на медиане AA1.
Прислать комментарий     Решение


Задача 56937

Тема:   [ Прямая Симсона ]
Сложность: 5
Классы: 9

а) Из точки P описанной окружности треугольника ABC проведены прямые PA1, PB1 и PC1 под данным (ориентированным) углом $ \alpha$ к прямым BC, CA и AB соответственно (точки A1, B1 и C1 лежат на прямых BC, CA и AB). Докажите, что точки A1, B1 и C1 лежат на одной прямой.
б) Докажите, что при замене в определении прямой Симсона угла  90o на угол $ \alpha$ она повернется на угол  90o - $ \alpha$.
Прислать комментарий     Решение


Задача 56938

Тема:   [ Прямая Симсона ]
Сложность: 5
Классы: 9

а) Из точки P описанной окружности треугольника ABC опущены перпендикуляры PA1 и PB1 на прямые BC и AC. Докажите, что  PA . PA1 = 2Rd, где R — радиус описанной окружности, d — расстояние от точки P до прямой A1B1.
б) Пусть $ \alpha$ — угол между прямыми A1B1 и BC. Докажите, что  cos$ \alpha$ = PA/2R.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .