ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 1957]      



Задача 77902

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

Даны 3 окружности O1, O2, O3, проходящие через одну точку O. Вторые точки пересечения O1 с O2, O2 с O3 и O3 с O1 обозначим соответственно через A1, A2 и A3. На O1 берем произвольную точку B1. Если B1 не совпадает с A1, то проводим через B1 и A1 прямую до второго пересечения с O2 в точке B2. Если B2 не совпадет с A2, то проводим через B2 и A2 прямую до второго пересечения с O3 в точке B3. Если B3 не совпадет с A3, то проводим через B3 и A3 прямую до второго пересечения с O1 в точке B4. Докажите, что B4 совпадает с B1.
Прислать комментарий     Решение


Задача 77903

Тема:   [ Против большей стороны лежит больший угол ]
Сложность: 3
Классы: 8,9

Пусть a, b, c — длины сторон треугольника; A, B, C — величины противоположных углов. Докажите, что

Aa + Bb + Cc$\displaystyle \ge$$\displaystyle {\textstyle\frac{1}{2}}$$\displaystyle \left(\vphantom{ Ab+Ba+Ac+Ca+Bc+Cb}\right.$Ab + Ba + Ac + Ca + Bc + Cb$\displaystyle \left.\vphantom{ Ab+Ba+Ac+Ca+Bc+Cb}\right)$.

Прислать комментарий     Решение

Задача 78471

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

Имеется 200 карточек размером 1×2, на каждой из которых написаны числа +1 и -1. Можно ли так заполнить этими карточками лист клетчатой бумаги размером 4×100, чтобы произведения чисел в каждом столбце и каждой строке образовавшейся таблицы были положительны? (Карточка занимает целиком две соседние клетки.)
Прислать комментарий     Решение


Задача 79426

Темы:   [ Раскраски ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 7,8,9

Белая плоскость произвольным образом забрызгана чёрной тушью. Доказать, что для любого положительного l существует отрезок длины l, у которого оба конца одного цвета.
Прислать комментарий     Решение


Задача 79449

Тема:   [ Иррациональные уравнения ]
Сложность: 3
Классы: 9

Решите уравнение $ {\frac{x^3}{\sqrt{4-x^2}}}$ + x2 - 4 = 0.
Прислать комментарий     Решение


Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .