Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Натуральное число n таково, что  3n + 1  и  10n + 1  являются квадратами натуральных чисел. Докажите, что число  29n + 11  – составное.

Вниз   Решение


Автор: Лифшиц А.

Существует ли такая последовательность натуральных чисел, чтобы любое натуральное число $1$, $2$, $3$, ... можно было представить единственным способом в виде разности двух чисел этой последовательности?

ВверхВниз   Решение


На прямых BC, CA и AB взяты точки A1, B1 и C1. Пусть P1 — произвольная точка прямой BC, P2 — точка пересечения прямых P1B1 и AB, P3 — точка пересечения прямых P2A1 и CA, P4 — точка пересечения P3C1 и BC и т. д. Докажите, что точки P7 и P1 совпадают.

ВверхВниз   Решение


Каждый из двух правильных многоугольников P и Q разрезали прямой на две части. Одну из частей P и одну из частей Q сложили друг с другом по линии разреза. Может ли получиться правильный многоугольник, не равный ни одному из исходных, и если да, то сколько у него может быть сторон?

ВверхВниз   Решение


Автор: Разин М.

Имеется набор из 20 гирь, с помощью которых можно взвесить любой целый вес от 1 до 1997 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каков минимально возможный вес самой тяжелой гири такого набора, если:
  а) веса гирь набора все целые,
  б) веса не обязательно целые?

ВверхВниз   Решение


В треугольнике ABC провели биссектрису CL. Точки A1 и B1 симметричны точкам A и B относительно прямой CL, A2 и B2 симметричны точкам A и B относительно точки L. Пусть O1 и O2 – центры описанных окружностей треугольников AB1B2 и BA1A2. Докажите, что углы O1CA и O2CB равны.

ВверхВниз   Решение


Даны окружность и не лежащая на ней точка. Из всех треугольников, одна вершина которых совпадает с данной точкой, а две другие лежат на окружности, выбран треугольник наибольшей площади. Докажите, что он равнобедренный.

ВверхВниз   Решение


а) Укажите два прямоугольных треугольника, из которых можно сложить треугольник, длины сторон и площадь которого — целые числа.
б) Докажите, что если площадь треугольника — целое число, а длины сторон — последовательные натуральные числа, то этот треугольник можно сложить из двух прямоугольных треугольников с целочисленными сторонами.

ВверхВниз   Решение


Каково наибольшее n, при котором так можно расположить n точек на плоскости, чтобы каждые 3 из них служили вершинами прямоугольного треугольника?

ВверхВниз   Решение


Продолжения сторон AB и CD четырехугольника ABCD пересекаются в точке P, а продолжения сторон BC и AD — в точке Q. Через точку P проведена прямая, пересекающая стороны BC и AD в точках E и F. Докажите, что точки пересечения диагоналей четырехугольников  ABCD, ABEF и CDFE лежат на прямой, проходящей через точку Q.

ВверхВниз   Решение


Три прямые проходят через точку O и образуют попарно равные углы. На одной из них взяты точки A1, A2, на другой – B1, B2, так что точка C1 пересечения прямых A1B1 и A2B2 лежит на третьей прямой. Пусть C2 – точка пересечения A1B2 и A2B1. Докажите, что угол C1OC2 прямой.

ВверхВниз   Решение


Серёжа придумал фигуру, которую легко разрезать на две части и сложить из них квадрат (см. рис.).


Покажите как по-другому разрезать эту фигуру на две части, из которых тоже можно сложить квадрат.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 105201

Темы:   [ Разные задачи на разрезания ]
[ Геометрия на клетчатой бумаге ]
Сложность: 4-
Классы: 6,7,8

Серёжа придумал фигуру, которую легко разрезать на две части и сложить из них квадрат (см. рис.).


Покажите как по-другому разрезать эту фигуру на две части, из которых тоже можно сложить квадрат.
Прислать комментарий     Решение


Задача 105218

Темы:   [ Теория игр (прочее) ]
[ Арифметическая прогрессия ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 8,9,10

Алиса и Базилио играют в следующую игру; из мешка, первоначально содержащего 1331 монету, они по очереди берут монеты, причем первый ход делает Алиса и берет 1 монету, а далее при каждом следующем ходе игрок берет (по своему усмотрению) либо столько же монет, сколько взял другой игрок последним ходом, либо на одну больше. Проигрывает тот, кто не может сделать очередной ход по правилам. Кто из игроков может обеспечить себе выигрыш независимо от ходов другого?
Прислать комментарий     Решение


Задача 105202

Темы:   [ Подсчет двумя способами ]
[ Линейные неравенства и системы неравенств ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 7,8,9

Каждую неделю Ваня получает ровно одну оценку ("3", "4" или "5") по каждому из семи предметов. Он считает неделю удачной, если количество предметов, по которым оценка улучшилась, превышает хотя бы на два количество предметов, по которым оценка ухудшилась. Оказалось, что n недель подряд были удачными, и в последнюю из них оценка по каждому предмету в точности совпала с оценкой первой недели. Чему могло равняться число n?

Прислать комментарий     Решение

Задача 105205

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства параллелограмма ]
[ Три прямые, пересекающиеся в одной точке ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 8,9,10

Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что  AB = KC.
Докажите, что прямые AL, NK и MC пересекаются в одной точке.

Прислать комментарий     Решение

Задача 105207

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Вписанный угол равен половине центрального ]
[ Касающиеся окружности ]
Сложность: 4-
Классы: 7,8,9

Назовем тропинкой замкнутую траекторию на плоскости, состоящую из дуг окружностей и проходящую через каждую свою точку ровно один раз. Приведите пример тропинки и такой точки M на ней, что любая прямая, проходящая через M, делит тропинку пополам, то есть сумма длин всех кусков тропинки в одной полуплоскости равна сумме длин всех кусков тропинки в другой полуплоскости.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .