ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Можно ли бумажный круг с помощью ножниц перекроить в квадрат той же площади?
(Разрешается сделать конечное число разрезов по прямым линиям и дугам окружностей.)

Вниз   Решение


Две прямые проходят через точку M и касаются окружности в точках A и B. Проведя радиус OB, продолжают его за точку B на расстояние BC = OB. Докажите, что $ \angle$AMC = 3$ \angle$BMC.

ВверхВниз   Решение


Даны две параллельные прямые и секущая. С помощью циркуля и линейки постройте окружность, касающуюся всех трёх прямых.

ВверхВниз   Решение


В круге радиуса R даны два взаимно перпендикулярных диаметра. Произвольная точка окружности спроектирована на эти диаметры. Найдите расстояние между проекциями точки.

ВверхВниз   Решение


Центр окружности, описанной около треугольника, совпадает с центром вписанной окружности. Найдите углы треугольника.

ВверхВниз   Решение


Между двумя параллельными прямыми дана точка. С помощью циркуля и линейки постройте окружность, проходящую через эту точку и касающуюся данных прямых.

ВверхВниз   Решение


Автор: Шень А.Х.

В стене имеется маленькая дырка (точка). У хозяина есть флажок следующей формы (см. рисунок).

Покажите на рисунке все точки, в которые можно вбить гвоздь, так чтобы флажок закрывал дырку.

ВверхВниз   Решение


Автор: Ивлев Ф.

Дан тетраэдр, в который можно вписать сферу, касающуюся всех его рёбер. Пусть отрезки касательных из вершин равны a, b, c и d. Всегда ли можно из этих четырёх отрезков сложить какой-нибудь треугольник? (Не обязательно использовать все отрезки. Разрешается образовывать сторону треугольника из двух отрезков.)

ВверхВниз   Решение


Каждую неделю Ваня получает ровно одну оценку ("3", "4" или "5") по каждому из семи предметов. Он считает неделю удачной, если количество предметов, по которым оценка улучшилась, превышает хотя бы на два количество предметов, по которым оценка ухудшилась. Оказалось, что n недель подряд были удачными, и в последнюю из них оценка по каждому предмету в точности совпала с оценкой первой недели. Чему могло равняться число n?

ВверхВниз   Решение


Алиса и Базилио играют в следующую игру; из мешка, первоначально содержащего 1331 монету, они по очереди берут монеты, причем первый ход делает Алиса и берет 1 монету, а далее при каждом следующем ходе игрок берет (по своему усмотрению) либо столько же монет, сколько взял другой игрок последним ходом, либо на одну больше. Проигрывает тот, кто не может сделать очередной ход по правилам. Кто из игроков может обеспечить себе выигрыш независимо от ходов другого?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 105201

Темы:   [ Разные задачи на разрезания ]
[ Геометрия на клетчатой бумаге ]
Сложность: 4-
Классы: 6,7,8

Серёжа придумал фигуру, которую легко разрезать на две части и сложить из них квадрат (см. рис.).


Покажите как по-другому разрезать эту фигуру на две части, из которых тоже можно сложить квадрат.
Прислать комментарий     Решение


Задача 105218

Темы:   [ Теория игр (прочее) ]
[ Арифметическая прогрессия ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 8,9,10

Алиса и Базилио играют в следующую игру; из мешка, первоначально содержащего 1331 монету, они по очереди берут монеты, причем первый ход делает Алиса и берет 1 монету, а далее при каждом следующем ходе игрок берет (по своему усмотрению) либо столько же монет, сколько взял другой игрок последним ходом, либо на одну больше. Проигрывает тот, кто не может сделать очередной ход по правилам. Кто из игроков может обеспечить себе выигрыш независимо от ходов другого?
Прислать комментарий     Решение


Задача 105202

Темы:   [ Подсчет двумя способами ]
[ Линейные неравенства и системы неравенств ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 7,8,9

Каждую неделю Ваня получает ровно одну оценку ("3", "4" или "5") по каждому из семи предметов. Он считает неделю удачной, если количество предметов, по которым оценка улучшилась, превышает хотя бы на два количество предметов, по которым оценка ухудшилась. Оказалось, что n недель подряд были удачными, и в последнюю из них оценка по каждому предмету в точности совпала с оценкой первой недели. Чему могло равняться число n?

Прислать комментарий     Решение

Задача 105205

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства параллелограмма ]
[ Три прямые, пересекающиеся в одной точке ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 8,9,10

Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что  AB = KC.
Докажите, что прямые AL, NK и MC пересекаются в одной точке.

Прислать комментарий     Решение

Задача 105207

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Вписанный угол равен половине центрального ]
[ Касающиеся окружности ]
Сложность: 4-
Классы: 7,8,9

Назовем тропинкой замкнутую траекторию на плоскости, состоящую из дуг окружностей и проходящую через каждую свою точку ровно один раз. Приведите пример тропинки и такой точки M на ней, что любая прямая, проходящая через M, делит тропинку пополам, то есть сумма длин всех кусков тропинки в одной полуплоскости равна сумме длин всех кусков тропинки в другой полуплоскости.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .