Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В стране несколько городов, некоторые пары городов соединены беспосадочными рейсами одной из N авиакомпаний, причём из каждого города есть ровно по одному рейсу каждой из авиакомпаний. Известно, что из каждого города можно долететь до любого другого (возможно, с пересадками). Из-за финансового кризиса был закрыт  N – 1  рейс, но ни в одной из авиакомпаний не закрыли более одного рейса. Докажите, что по-прежнему из каждого города можно долететь до любого другого.

Вниз   Решение


На столе белой стороной кверху лежали 100 карточек, у каждой из которых одна сторона белая, а другая чёрная. Костя перевернул 50 карточек, затем Таня перевернула 60 карточек, а после этого Оля – 70 карточек. В результате все 100 карточек оказались лежащими чёрной стороной вверх. Сколько карточек было перевернуто трижды?

ВверхВниз   Решение


При разложении чисел A и B в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа  A + B?

ВверхВниз   Решение


Даны различные натуральные числа  a1, a2, ..., a14.  На доску выписаны все 196 чисел вида  ak + al,  где  1 ≤ k, l ≤ 14.  Может ли оказаться, что для каждой комбинации из двух цифр среди написанных на доске чисел найдётся хотя бы одно число, оканчивающееся на эту комбинацию (то есть найдутся числа, оканчивающиеся на 00, 01, 02, ..., 99)?

ВверхВниз   Решение


Существуют ли в пространстве 4 точки A,B,C,D такие, что AB=CD=8 см; AC=BD=10 см; AB+BC=13 см?

ВверхВниз   Решение


Ненулевые числа a, b, c таковы, что каждые два из трёх уравнений  ax11 + bx4 + c = 0,  bx11 + cx4 + a = 0,  cx11 + ax4 + b = 0  имеют общий корень. Докажите, что все три уравнения имеют общий корень.

ВверхВниз   Решение


{a1, a2, ..., a20} — набор целых положительных чисел.
Строим новый набор чисел {b0, b1, b2, ...} по следующему правилу:
b0 — количество чисел исходного набора, которые больше 0,
b1 — количество чисел исходного набора, которые больше 1,
b2 — количество чисел исходного набора, которые больше 2,
и т.д., пока не пойдут нули. Докажите, что сумма всех чисел исходного набора равна сумме всех чисел нового набора.

ВверхВниз   Решение


Уравнение  xn + a1xn–1 + ... + an–1x + an = 0  с целыми ненулевыми коэффициентами имеет n различных целых корней.
Докажите, что если каждые два корня взаимно просты, то и числа an–1 и an взаимно просты.

ВверхВниз   Решение


В клетках таблицы 2000×2000 записаны числа 1 и –1. Известно, что сумма всех чисел в таблице неотрицательна. Докажите, что найдутся 1000 строк и 1000 столбцов таблицы, для которых сумма чисел, записанных в клетках, находящихся на их пересечении, не меньше 1000.

ВверхВниз   Решение


На клетчатой бумаге нарисована фигура (см. рис. 1): в верхнем ряду — одна клеточка, во втором сверху — три клеточки, в следующем ряду — 5 клеточек, и т.д., всего рядов — n. Докажите, что общее число клеточек есть квадрат некоторого числа.
                                     _
                                   _|_|_
                                 _|_|_|_|_
                               _|_|_|_|_|_|_
                              |_|_|_|_|_|_|_|
                           .....................
                         _ _ _ _           _ _ _ _
                        |_|_|_|_| ....... |_|_|_|_|
Рис. 1

ВверхВниз   Решение


У Пети всего 28 одноклассников. У каждых двух из 28 различное число друзей в этом классе. Сколько друзей у Пети?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 107985

Темы:   [ Разные задачи на разрезания ]
[ Инварианты ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 7,8,9

Бумажный треугольник с углами 20°, 20°, 140° разрезается по одной из своих биссектрис на два треугольника, один из которых также разрезается по биссектрисе, и так далее. Может ли после нескольких разрезов получиться треугольник, подобный исходному?

Прислать комментарий     Решение

Задача 107983

Темы:   [ Метод ГМТ ]
[ Против большей стороны лежит больший угол ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 7,8,9

Для двух данных различных точек плоскости A и B найдите геометрическое место таких точек C, что треугольник ABC остроугольный, а его угол A - средний по величине.

Комментарий. Под средним по величине углом мы понимаем угол, который не больше одного из углов, и не меньше другого. Так, например, мы считаем, что у равностороннего треугольника любой угол - средний по величине.

Прислать комментарий     Решение

Задача 107986

Темы:   [ Степень вершины ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 7,8,9

У Пети всего 28 одноклассников. У каждых двух из 28 различное число друзей в этом классе. Сколько друзей у Пети?

Прислать комментарий     Решение

Задача 107987

Темы:   [ Функции нескольких переменных ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9,10

Каждой паре чисел x и y поставлено в соответствие некоторое число x*y. Найдите 1993*1935, если известно, что для любых трёх чисел x, y, z  выполнены тождества:  x*x = 0  и  x*(y*z) = (x*y) + z.

Прислать комментарий     Решение

Задача 107984

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Индукция (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 4
Классы: 8,9,10

Найдите x1000, если  x1 = 4,  x2 = 6,  и при любом натуральном  n ≥ 3  xn – наименьшее составное число, большее   2xn–1xn–2.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .