ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В окружность радиуса 2 вписан остроугольный треугольник A1A2A3. Докажите, что на дугах A1A2, A2A3, A3A1 можно отметить по одной точке (B1, B2, B3 соответственно) так, чтобы площадь шестиугольника A1B1A2B2A3B3 численно равнялась периметру треугольника A1A2A3. Четырёхугольник ABCD вписанный, M – точка пересечения прямых AB и CD, N – точка пересечения прямых BC и AD. Известно, что BM = DN. На берегу круглого озера растут 6 сосен. Известно, что если взять такие два треугольника, что вершины одного совпадают с тремя из сосен, а вершины другого – с тремя другими, то в середине отрезка, соединяющего точки пересечения высот этих треугольников, на дне озера находится клад. Неизвестно только, как нужно разбить данные шесть точек на две тройки. Сколько раз придётся опуститься на дно озера, чтобы наверняка отыскать клад? Пусть a1, ..., a11 –
различные натуральные числа, не меньшие 2, сумма которых равна 407. Даны пятьдесят различных натуральных чисел, двадцать пять из которых не превосходят 50, а остальные больше 50, но не превосходят 100. При этом никакие два из них не отличаются ровно на 50. Найдите сумму этих чисел. У Алёши есть пирожные, разложенные в несколько коробок. Алёша записал, сколько пирожных в каждой коробке. Серёжа взял по одному пирожному из каждой коробки и положил их на первый поднос. Затем он снова взял по одному пирожному из каждой непустой коробки и положил их на второй поднос – и так далее, пока все пирожные не оказались разложенными по подносам. После этого Серёжа записал, сколько пирожных на каждом подносе. Докажите, что количество различных чисел среди записанных Алёшей равно количеству различных чисел среди записанных Серёжей. a) Восемь школьников решали восемь задач. Оказалось, что каждую задачу решили пять школьников. Докажите, что найдутся такие два школьника, что каждую задачу решил хотя бы один из них. Сережа нарисовал треугольник ABC и провёл в нем медиану AD. Затем он сообщил Илье, какова в этом треугольнике длина медианы AD и какова длина стороны AC. Илья, исходя из этих данных, доказал утверждение: угол CAB тупой, а угол DAB острый. Найдите отношение AD : AC (и докажите для любого треугольника с таким отношением утверждение Ильи). Решите систему уравнений (n > 2) x1 – x2 = 1. В окружность радиуса 2 вписан тридцатиугольник A1A2...A30. Докажите, что на дугах A1A2, A2A3, ..., A30A1 можно отметить по одной точке (B1, B2, ..., B30 соответственно) так, чтобы площадь шестидесятиугольника A1B1A2B2...A30B30 численно равнялась периметру тридцатиугольника A1A2...A30. На столе лежат N > 2 кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты, и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого N выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник. |
Страница: 1 2 >> [Всего задач: 7]
Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.
Пространство разбито на одинаковые кубики. Верно ли, что для каждого из этих кубиков обязательно найдётся другой, имеющий с ним общую грань?
На столе лежат N > 2 кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты, и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого N выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.
Дана неравнобокая трапеция ABCD. Точка A1 –
это точка пересечения описанной окружности треугольника BCD с прямой AC,
В бесконечной последовательности a1, a2, a3, ... число a1 равно 1,
а каждое следующее число an строится из предыдущего an–1 по правилу: если у числа n наибольший нечётный делитель имеет остаток 1 от деления на 4, то an = an–1 + 1, если же остаток равен 3, то an = an–1 – 1. Докажите, что в этой последовательности
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке